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ABSTRACT

We present a visual analytics system that supports an uncertainty-
aware analysis of static and dynamic attributes of biochemical reac-
tion networks (BRNs). These are often described by mathematical
models, such as ordinary differential equations (ODEs), which en-
able the integration of a multitude of different data and data types
using parameter estimation. Due to the limited amount of data, pa-
rameter estimation does not necessarily yield a single point in pa-
rameter space and many attributes of the model remain uncertain.
Our system visualizes the model as a graph, where the statistics of
the attributes are mapped to the color of edges and vertices. The
graph view is combined with several linked views such as lineplots,
scatterplots, and correlation matrices, to support the identification
of uncertainties and the analysis of their mutual dependencies as
well as their time dependencies. To assess the utility of the individ-
ual visualization approaches and multiple linked views, a qualita-
tive user study with domain experts was performed. We found that
all users were able to process analysis tasks using our system.

Keywords: Network visualization, uncertainty visualization, bio-
chemical reaction networks

Index Terms: H.5.m [Information Systems]: Information Inter-
faces and Presentation—Miscellaneous; J.3 [Computer Applica-
tions]: Life and Medical Sciences—Biology and genetics;

1 INTRODUCTION

Most properties of intracellular biological systems arise from the
complex interaction of biochemical species (e.g., genes and pro-
teins). The interaction structure and the underlying interaction
mechanisms can be described using BRNs. BRNs can be used
to collect the knowledge available about the system of interest. It
has been realized that models of biochemical reaction networks are
powerful tools and may help us gain a holistic understanding of
specific cell functions or diseases [20]. Therefore, models of BRNs
have become state-of-the-art tools used in academia and industry
alike. There are different reasons for analyzing BRNs, such as the
detection of potential drug targets to treat a certain disease. This
model-based detection reduces the need for large screening studies
and enables a faster and cheaper drug development process [30].

Biological systems of this kind can be described by mathemati-
cal models, such as ODEs. To allow the reliable prediction of drug
targets, a multitude of different data and data types has to be in-
corporated into the ODE model using parameter estimation. As the
models are often high-dimensional and contain many unknown pa-
rameters, parameter estimation does in general not provide a unique
result, especially considering the limited amount of data. One com-
mon way to deal with that property is to obtain a sample of potential
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parameters that provide a reasonable fit of the data [8, 21, 37]. The
analysis of the model uncertainties, encoded within these samples,
is essential to draw grounded conclusions about the systems’ be-
havior. Various tools are available to simulate and visualize BRN
models but hardly any tools exist that would support the visual anal-
ysis of uncertainties in BRN models.

In this work, we present a visual analytics system that enables the
user to perform an in-depth study of uncertain BRNs. We focus on
BRN models by ODEs and parameters estimated using Bayesian
estimation approaches. Bayesian estimation directly provides the
statistics of network attributes, including the static model parame-
ters and the dynamic concentrations and fluxes. Our visual analytics
system visualizes attribute uncertainties and their time-dependence
directly within the graph view and within different linked views.
The biological networks are displayed as node-link diagrams and
attributes are mapped to the color of the respective elements (edges
or nodes). The user can explore the BRN model with linked views,
such as lineplots, scatterplots, and correlation matrices. The util-
ity of the individual visualization methods as well as the linking is
assessed with a qualitative user study with 10 domain experts.

2 APPLICATION BACKGROUND

In this section, we briefly review the basics of BRNs. These in-
clude ODE-based modeling, Bayesian parameter estimation, and
uncertainty analysis (see Figure 1). Based upon this, we derive the
analysis and visualization requirements.

2.1 Biochemical Reaction Networks

Biochemical reaction networks consist of chemical species
(X1,X2, . . . ,Xnx ) and reactions (R1,R2, . . . ,Rnr ). A chemical species
is an ensemble of chemically identical molecular entities, such as
proteins and metabolites, whereas a process that results in the in-
terconversion of chemical species is referred to as chemical reac-
tion [26], e.g., phosphorylation.

Chemical reactions are defined via lists of reactants (r) and prod-
ucts (p), and can be written as:

R j :
nx

∑
i=1

s(r)i j Xi→
nx

∑
i=1

s(p)i j Xi, j = 1, . . . ,nr,

where, s(r)i j (s(p)i j ) ∈ N0 is the stoichiometric coefficient of species
i in reaction j. This coefficient denotes the number of molecules
consumed (produced) when the reaction takes place [20].

BRNs can be interpreted as a directed graph where vertices rep-
resent species Xi and edges represent reactions R j. The vertex and
edge structure is coded in the stoichiometric matrix S. Besides reg-
ular directed edges that represent interconversions between species,
directed hyper-edges from a species to a reaction resulting from reg-
ulatory interactions may exist. If species Xi influences the rate of
reaction R j without being consumed, it is a modifier of R j.
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Figure 1: Workflow of model development, including the derivation of a parametric ODE model and the data collection (left), the parameter
estimation (middle), and the uncertainty analysis (right).

2.2 Ordinary Differential Equation Models of Biochemi-
cal Reaction Networks

In the following, the dynamics of the BRNs are modeled using
ODEs. ODE models of BRNs are commonly written as:

ẋ = Sv(x,θ), x(0) = x0(θ), (1)

in which x(t) is the state at time t, with xi being the concentration
of the chemical species Xi. Furthermore, x0(θ) is the parameter de-
pendent initial condition, S = {Si j = s(p)i j − s(r)i j } is the stoichiomet-
ric matrix, v(x,θ) is the flux vector, and θ is the parameter vector.
While the state x(t) provides information about the current condi-
tions, the flux v(x,θ) determines the change of the state with time t.
The flux v j(x,θ) is often modeled using mass action kinetics [20],
yielding

v j(x,θ) = θ j

nx

∏
i=1

x
s(r)i j
j , j = 1, . . . ,nr. (2)

In this context, parameters θ j are reaction rate coefficients.
In a graph representation, the time-dependent states xi(t) are at-

tributes of the vertices. The edges have two attributes: the time-
dependent fluxes v j(x(t),θ) and the parameters θ j.

While the ODE framework is highly flexible and allows for the
description of many metabolic, signal transduction, and gene reg-
ulation processes, it suffers like most other modeling approaches
from one major problem: due to experimental constraints, the pa-
rameters θ j cannot be measured directly, but have to be estimated.

2.3 Bayesian Parameter Estimation

To estimate the parameters θ j, measurement data are collected.
The measured quantities y(t) = h(x,θ) (also called outputs), typi-
cally are individual states variables (hi(x,θ) = x j) or sums of states
(hi(x,θ) = x j1 + x j2 ). As the measurements are affected by noise,
the available data are: D = {(ȳ(tk) = y(tk)+ε(tk), tk)}nt

k=1 in which
tk, ȳ(tk), and ε(tk) denote the time at which the measurement was
performed, the noise-corrupted output, and the noise, respectively.

Given the data D , the parameters are reconstructed. Therefore,
Bayesian parameter estimation [21, 36] can be used, relying on

p(θ |D) ∝ p(D |θ)p(θ). (3)

Here p(θ |D) is the posterior probability of a parameter vector θ

given the data D , which is proportional to the product of the condi-
tional probability p(D |θ) and prior knowledge p(θ).

2.4 Uncertainties of Parameters, Fluxes, and States
Typically, the parameters θ j cannot be estimated uniquely but re-
main uncertain. This uncertainty is encoded in the shape of the
posterior probability p(D |θ). As the parameter vector θ is often
high-dimensional, nθ � 1, the analysis of p(D |θ) is challenging.

To analyze the uncertainty, a sample {θ (l)}ns
l=1 from p(D |θ)

is generated, using Markov chain Monte Carlo (MCMC) sam-
pling [25]. Associated to this parameter sample, we have a flux
sample {v(l)(t)}ns

l=1 and a state sample {x(l)(t)}ns
l=1. The individual

sample members are flux trajectories v(l)(t) := v(x(l)(t),θ (l)) and
state trajectories x(l)(t) := x(t;θ (l)), respectively, obtained for sim-
ulating model (1) with parameter θ (l). These samples {θ (l)}ns

l=1,
{v(l)(t)}ns

l=1, and {x(l)(t)}ns
l=1 carry the statistical properties of

p(D |θ) as well as its image in flux and concentration space. Hence,
the samples can be used to gain insight into the parameter and pre-
diction uncertainties.

2.5 Goals of the Uncertainty Analysis and Require-
ments

Understanding the uncertainties is key to ensure good comprehen-
sion of the model and its limitations, and to allow the selection of
future experiments. Unfortunately, an in-depth analysis of the un-
certainty is ambitious because it has a multitude of different dimen-
sions. In particular, static and dynamic attributes are present, and
hidden dependencies between attributes of different vertices and
edges are of interest.

So far, domain experts mainly used tables, scatterplots, and line-
plots of existing systems individually to investigate parameter, flux,



and concentration samples. In doing so, it is hard to detect com-
plex patterns within the data as it is not possible to obtain a detailed
view of the distributions. To achieve this, it is necessary to pro-
vide linked visualizations for the analysis of individual attributes of
the BRN model. In particular, exploration approaches are essen-
tial ingredients, as they allow the user to subsequently focus on the
following Analysis Tasks:

1. assessment of relatively high uncertainties.
2. localization of uncertainties hubs.
3. analysis of time-dependence of fluxes and concentrations and

their time-dependent uncertainties.
4. localization of hubs involved in fast or slow process dynamics.
5. characterization of correlations between attributes, e.g., be-

tween parameters, fluxes, or concentrations.

In order to help the target users, who are in our case systems biolo-
gists and biomathematicians, to perform the above mentioned anal-
ysis tasks, it is essential to develop a system that includes views
onto the data whose functionality matches the expectations of the
users. As argued by Plaisant, it is therefore necessary “to study the
design context for visualization tools including tasks, work environ-
ments and current work practice” [22]. Our visual analytics system
was developed in a participatory design process using evolution-
ary prototypes [6]. Concerning the seven evaluation scenarios by
Lam et al. [22], studying the target users using observations and in-
terviews falls into the category “Understanding Environments and
Work Practices”. Besides conducting an initial interview for a first
requirements analysis, we involved two target users in all phases of
the design process to refine requirements, to evaluate concrete ideas
about views, and to select the best from different alternatives. Dur-
ing the entire design cycle of about six months, meetings with the
two collaborators were held regularly, typically on a biweekly ba-
sis. Feedback from the target users concerning possible views and
interactions, gained during these meetings, could therefore directly
be incorporated into the development process.

3 RELATED WORK

Biochemical reaction networks are usually displayed as node-link
diagrams, where chemical species are represented as vertex glyphs
and reactions by arrows between them. The vertices and edges of
a graph may be provided with domain-specific attributes, such as
parameters, fluxes, and concentrations within BRNs, that describe
properties of objects or relations. These can be mapped to visual
attributes of vertices, such as their size, shape, color, or brightness,
and visual attributes of edges, such as their length, thickness, color,
or brightness [15].

Where the structure of BRNs is fixed, attributes attached to ver-
tices (concentrations) and edges (fluxes) can change. There are
three common visualization methods used to overlay the evolution
of multi-dimensional information onto graphs [7]: animation, small
multiples [31], and complex glyphs, such as small charts embedded
into the graph.

Although there is a large number of visualization tools for bio-
chemical reaction networks, only few of them support the visu-
alization of dynamic node attributes describing experimental data
values. Tools, such as GENeVis [35], VANTED [18], Cerebral [5],
Pathline [27], and the Pathway Tools software [19], visualize gene
regulatory networks and related gene expression values at specific
time steps. While GENeVis and VANTED make use of small charts
embedded into the vertices, Cerebral and Pathline use small multi-
ple views of the graph or line charts of the time-series data. These
approaches work fine for their applications due to the manageable
number of time steps but do not scale well for much longer time
series. In contrast, the Pathway Tools software visualizes attribute
dynamics using animation instead of a static representation.

Besides the visual analysis of time dependancies of attributes
of BRNs, particularly the analysis of attribute uncertainties is of
interest for a reliable assessment of potential drug targets. Un-
fortunately, hardly any tools exist that visualize these uncertain-
ties. Tools, such as COPASI [14] or CellDesigner [12], support the
simulation of BRN models and visualization of model predictions.
While these tools are suitable given that we are interested in just
one parameter value, they fail to provide visualizations of the pre-
diction uncertainties. Finally, available tools do not support a visual
exploration of network and prediction uncertainties.

The quantification and visualization of uncertainties within ex-
perimental or simulated data has been recognized as one of the most
important issues in scientific visualization [16]. Often, uncertain-
ties originate during data acquisition and due to limited amounts
of data. In our application, information about the model uncer-
tainties are assessed during parameter estimation. Uncertainties
can be quantitatively described by statistical properties like prob-
ability, error, percentage, and standard deviation. These values
can be directly visualized using one of the possible approaches:
adding glyphs or geometry to the rendered scene, modifying geom-
etry, modifying attributes of the geometry, animation, or addressing
other human senses [28]. A common approach is the modification
of geometry using visual attributes, like color, size, position, trans-
parency and so on, or the plotting of discrete data points as glyphs
(e.g., box plots or quartile plots) with specific visual attributes.

While there is extensive research on visualization of uncertain-
ties of flow fields and surface representations [13, 17], only little
work has been done on visualizing uncertainties within graphs, i.e.,
the uncertainties of relations or attributes of the graph. Collins et
al. [10] visualized uncertainties of translations using lattice graphs
that show multiple linear paths for a translation. Cesario et al. [9]
visualized uncertainties of multiple static node attributes using a
spatial layout and multiple linked views such as bullseye, compar-
ative column, scatterplot, and parallel coordinates. Their approach
was particularly designed to compare two static graphs and their
attributes. CandidTree was developed by Lee et al. [23] to visu-
alize structural uncertainties. To the best of our knowledge, there
exists no tool that visualizes attribute uncertainties directly within
the graph, e.g., by mapping them to visual attributes of nodes or
edges.

4 VISUAL ANALYTICS SYSTEM

To analyze the estimation quality of static parameters (θ ), dynamic
fluxes (v), and dynamic concentrations (x, also referred to as states)
of the system model, it is necessary to get an overview of the sum-
mary statistics of samples, like mean and standard deviation. These
can be mapped to visual attributes of the graph (see Figure 2).
At the same time, the distribution of values within the samples
needs to be investigated and should be visually available to the user.
Hence, our system uses multiple linked views to visualize summary
statistics and distributions of values within samples, the dynamic
change of samples and correlations between sample members or
time courses. We use brushing and linking to show the correspon-
dence of elements in different views. If the selection within one
view changes by brushing, the respective elements within all views
are first highlighted by short flashing before they stay highlighted.

In the following sections, we present different methods that can
be used to analyze data uncertainties, dynamics, and correlations
to solve the aforementioned Analysis Tasks (Section 2.5). A small
case study used for the qualitative user study is shown in Figure 4.

4.1 Visualization of Attribute Samples

MCMC sampling does not only provide a sample of the parameters
{θ (l)}ns

l=1, but also the fluxes {v(l)(t)}ns
l=1 and reactant concentra-

tions {x(l)(t)}ns
l=1. Before the mean and standard deviation of a



Figure 2: Graph of the Caspase Cascade Eissing model for apop-
tosis. The colors of the edges elucidate the uncertainty of the pa-
rameters of the respective reactions (θ j) and the colors of the ver-
tices illustrate the uncertainty of the concentrations of the respective
compounds at the steady state. There is a strong correlation be-
tween the parameter samples {θ17

(l)}ns
l=1 and {θ18

(l)}ns
l=1 (respective

edges for R17 and R18 are selected and thus highlighted). The two
species whose concentrations have been predicted with high uncer-
tainty (CARP and C8a CARP) are selected and highlighted. See
time courses for these concentrations in Figure 3.

sample are calculated, the values are transformed using the loga-
rithm to the base 10 (log10). For fluxes and concentrations, we first
compute the 5-percentile, which we later use as a threshold to cut
off small values we do not want to differentiate.

The standard deviation of a sample is a measure of uncertainty
of this attribute. Due to the log-transformation the computed un-
certainties are the relative uncertainties of the associated (non-
transformed) attributes. To support the user in Analysis Tasks 1
and 2, the statistical variables mean and standard deviation are vi-
sualized by modifying the color of the respective objects. Ware and
Beatty [34] stated that color scales based on an approximation to the
physical spectrum are effective to convey metric information. The
statistical values can be mapped to the color of edges (for θ j and
v j(x(t),θ)) and vertices (for xi(t)) either individually or in combi-
nation. For edges, only one of the two attributes (θ j or v j(x(t),θ))
can be visualized at a time.

The mean of an attribute sample can be mapped to color using
continuous multi-hue colormaps that map the mean values linearly
to a range of hues with monotonously changing brightness. Be-
fore this color-mapping, a thresholding of mean values based on
the aforementioned 5-percentile is applied. The target users chose
a subset of different multi-hue colormaps that are available within
the system. Using these colormaps, users can easily identify rela-
tively high and small values, which is essential as the target users
noted that it is mainly of interest to analyze the differences of mean
values instead of the absolute value.

The uncertainty of an attribute sample is mapped to the saturation
of the color. If only uncertainty is visualized, the standard deviation
is mapped to color using a univariate single-hue colormap, where
the standard deviation determines the saturation of the color. Al-
though it is hard to differentiate hue and saturation simultaneously,
we decided to incorporate a bivariate multi-hue colormap to allow
users to visualize mean and standard deviation simultaneously.

For parameters θ j, an overview of all mean values and standard
deviations is available within a table. The cells of the table are
colored using the selected color maps for edges for mean values
and standard deviations, respectively. Hence, the lowest and high-
est mean values and standard deviations for the parameters of the
system can be identified at a glance, which fulfills Analysis Task 1.
Relatively high uncertainties are of no consequence for the systems’
behavior, if the parameter value itself is relatively low. In contrast,
for a high parameter θ j high uncertainties predominate, i.e., that

Figure 3: Lineplot of the evolution of concentrations (xi(t)) within
the Caspase Cascade Eissing model. Lines are surrounded by
semitransparent areas representing the uncertainty. The time
course of the concentrations for the selected compounds CARP
and C8a CARP are highlighted, i.e., the line width is increased and
the area around the line is less transparent than for the other time
courses. These are the compounds that have been predicted with
the highest uncertainty. The plot illustrates that for many compounds
the concentration changes drastically around t=175 min and the time
courses converge towards the steady state. The thin vertical black
line indicates the currently selected time point (t=175 min).

the concentration xi of the species Xi involved in the respective re-
action R j, as well as the flux v j of R j are likely to be estimated with
uncertainty, too.

To investigate the distribution of values within parameter sam-
ples {θ (l)}ns

l=1, the user can open a histogram view including the
histograms for a set of selected parameters (edges). The histograms
are computed with the same bin width and are thus comparable.

4.2 Visualization of the Attribute Dynamics

As introduced in Section 2.2, BRNs are dynamic and so are concen-
trations and fluxes. For the analysis of the systems’ behavior, par-
ticularly the comparison of different time series for various fluxes
v j(x(t),θ) or concentrations xi(t) is of interest. Furthermore, sys-
tem biologists want to analyze the change of uncertainty over time
and whether a steady state was reached for all components. As
mentioned in Section 3, dynamic graphs can be visualized in three
ways: using small multiples, animation, or small embedded charts.
The use of small embedded charts, i.e., the visual stacking of charts
within the graph, lacks the aforementioned data Analysis Tasks,
particularly the comparison of time series. Using this approach,
each time series of a concentration or flux would be plotted within
an individual chart within the respective node or adjacent to the re-
spective edge. It would be hard to compare different time series
that are plotted apart from each other and furthermore do not share
a common reference point. Furthermore, for long time series data,
the embedded charts would become too large, leading either to oc-
clusion of objects or a graph layout exceeding the available screen
space. Also the approach of small multiples does not scale for the
large number of time steps (about 100 time steps) the simulations
comprise, due to the partitioning of available display space. Ani-
mation poses a natural way to convey dynamic data as it is consis-
tent with the users expectation. At the same time, its effectiveness
is limited due to perceptual and cognitive limitations in the pro-
cessing of changing visual presentations [32]. Therefore, changes
within the graph should be highlighted [33]. We incorporated an-
imation within our system mainly to support the user in getting an
overview of when something changes drastically and in identify-
ing hubs within the network, where changes appear in a time in-



Figure 4: (1): Insulin signaling model to illustrate the use of our visual analytics system. Edges and vertices are colored based on the standard
deviation at the steady state (t=30 min) of flux samples {v(l)(t)}ns

l=1 and concentrations {x(l)(t)}ns
l=1, respectively. The time courses of fluxes and

concentrations can be analyzed within lineplots (see (6) and (7)), where within (6) the lines for all fluxes that have been predicted reliably are
hidden to reduce clutter. The table of mean values and standard deviations for the static parameter samples {θ (l)}ns

l=1 (see (4)) shows that there
are several uncertain parameters. Merely the samples of four parameters k1, k4, k5 and k9 possess standard deviations close to zero. The
histogram (see (3)) allows for the detailed study of the distribution of individual parameters and shows here that k1 is rather certain whereas k2
and k3 are uncertain. The Pearson correlation matrix (see (5)) reveals a strong anti-correlation of k7 and k13 (selected cell within the matrix and
hence respective edges within the graph view (1) and lines within the line plot (6) are highlighted). Furthermore, there is a slight anti-correlation
between k1 and k2, which is confirmed by the scatterplot for the respective two samples (see (2)). In (1) and (7), we see that Xp is the species
with the highest uncertainty. The analysis of this system model was captured and summarized within a video (see additional material).

terval of interest (Analysis Task 4). Thereby, the mean value or
standard deviation of a sample {v(l)(t)}ns

l=1 ({x(l)(t)}ns
l=1) for the

selected time step tk is mapped to the color of the respective edge
(vertex). The user can navigate through time either rapidly with the
help of a slider or stepwise using the forward or backward button.
It is also possible to start an automatic run through time by keep-
ing one of the buttons pressed. During the automatic animation,
drastic changes of the mean or standard deviation of the samples
{v(l)(t)}ns

l=1 ({x(l)(t)}ns
l=1) are automatically detected and respec-

tive edges (vertices) are briefly highlighted within the graph.

Animation supports the user in getting an overview about the
changes but does not allow for a detailed analysis and comparison
of all time series for fluxes or concentrations (Analysis Task 3).
Therefore, we decided to visualize the mean values and standard
deviations of {v(l)(t)}ns

l=1 ({x(l)(t)}ns
l=1) in separate lineplots, where

each line within the plot corresponds to the mean time course of a
specific flux v j (concentration xi). To visualize the uncertainty of
the flux (concentration) over time, we decided to frame each line
by a semitransparent area indicating the uncertainty, instead of us-

ing common glyphs like box plots or quartile plots. The lines are
colored based on a color map created with ColorBrewer [3]. An
additional vertical line within the plot indicates the current time
step and is updated during animation. The lineplot view is linked
to the graph display in a way that the respective lines and areas
representing the uncertainty for selected edges (vertices) are high-
lighted within the lineplot and vice versa (see Figures 3 and 4).
Time courses can also be highlighted by hovering over the lines.
With increasing size of the BRN and thus number of reactions and
species, the lineplots for fluxes and concentrations become clut-
tered. Furthermore, it is difficult to distinguish more than approx-
imately 10 colors and thus to allocate time series with respective
reactions (species). Therefore, lines can be faded out instead of just
highlighting selected elements to focus on fluxes (concentrations)
of interest.

4.3 Visualization of Correlations Between Attributes
Another Analysis Task (Task 5) defined by the target users is the
identification of correlations between uncertainties within the sys-
tem. Often, uncertainty in one attribute comes along with uncer-



tainty in some other attributes. Besides, the values of two attributes,
e.g., two parameters in {θ (l)}ns

l=1, might be correlated. Two differ-
ent matrix views are available that can be used to investigate de-
pendencies of or correlation between different dimensions of the
parameter sample {θ (l)}ns

l=1: an eigenvalue-ratio-matrix and a cor-
relation matrix. Where the former is based on principal component
analysis (PCA), the correlation matrix includes Pearson’s correla-
tion coefficients for all pairwise combinations of parameter sam-
ples. For fluxes (concentrations), the correlation matrix displays the
pairwise Pearson’s correlation between time courses of either mean
values or standard deviations instead of sample members. The cells
within this matrix include the numerical values and are colored with
respect to the sign and absolute value of the ratio (see (5) in Fig-
ure 4). In particular, we used a classic cool-warm color map that
maps negative values to blue and positive values to red, where the
smaller the absolute value, the less saturated is the color.

Similar to the lineplot views, also the matrix views are linked to
the graph display. Hence, if a cell within the matrix is selected, the
two respective elements within the graph as well as the respective
lines within the lineplot view are highlighted. Vice versa, if the
user selects two edges (vertices) within the graph, the respective
cell within the matrix view is highlighted.

While the matrices can be used to obtain an overview of occur-
ring correlations within the system, scatterplots can be used to gain
further insights into the kind of correlation and distribution of val-
ues in the sample (see (2) in Figure 4). Therefore, it is possible
to open a scatterplot of the samples of two elements ({θ (l)}ns

l=1,
{v(l)(t)}ns

l=1, {x(l)(t)}ns
l=1), directly selected within the graph or in-

directly by selecting a matrix cell. For fluxes and concentrations,
only samples for the currently selected time point tk are visualized
within the scatterplot. The scatterplot view also shows the results of
the PCA, performed on the two samples, including the eigenvectors
and eigenvalues.

4.4 Implementation

The visual analytics approach (see Figure 4 and movies within the
supplemental material) is implemented in Java. For the network
visualization, we make use of the Java Universal Network/Graph
Framework Version 2.0.1 [1]. As basis for the diverse plots, in-
cluding lineplots, histograms and scatterplots, we use the package
JMathPlot of the Java library JMathTools [2].

BRNs are stored using the Systems Biology Markup Language
(SBML) [4], a widely established interchange format, used to de-
scribe qualitative and quantitative models.

5 QUALITATIVE USER STUDY WITH DOMAIN EXPERTS

After the participatory design process of our visual analytics sys-
tem, we performed a qualitative user study with a larger group of
experts from the respective domain, i.e., potential target users. Due
to quality concerns, Perer and Shneiderman recommended the use
of domain experts for evaluations [29]. Concerning the seven evalu-
ation scenarios by Lam et al. [22], our study falls under the category
“Evaluating User Experience”. Such evaluations are used to “study
people’s subjective feedback and opinions”, i.e., to analyze the sub-
jective preferences concerning views and features of the tool, and
to investigate “to what extent visualization supports the intended
tasks”. The intended Analysis Tasks were described in Section 2.5,
including tasks related to uncertainty, time dependance, and corre-
lations. As measurements of usability we used different qualitative
data including the participants comments, investigators’ observa-
tions as well as the results of the evaluation survey [11, 22]. An
evaluator took notes of interesting behavior while the participants
interacted with the tool. Furthermore, the participants were asked
to fill out a laboratory questionary in a 5-point Likert scale.

5.1 Participants and Equipment
The participants of the qualitative user study work in the field of
systems biology and were familiar with BRN models as well as the
process of parameter estimation. The group of participants did not
include the collaborators that were involved in the formative design
process and consisted of 10 people (7 male, 3 female), six of whom
have already received the M.Sc. degree or higher while the remain-
ing are still working toward their M.Sc.degree. Six participants are
working with system models of biological networks and the prob-
lem of parameter estimation and related uncertainties on a regular
basis during their work (10-40 hours per week). Although the ma-
jority of the participants did not have extensive experience with vi-
sualization tools, they were at least familiar with common types of
plots, such as lineplots and scatterplots. These information could
be retrieved based on the questionaries the participants were asked
to fill in during the informing session (see Section 5.2).

We used a desktop computer running Windows 7, a camcorder,
two 21” displays, and standard devices such as keyboard and
mouse. As the tool comprises several visualizations that can be
opened within separate windows, we decided to provide two dis-
plays. In this way, the participants were able to look at several
views at the same time, without squeezing the views too much.

5.2 Study Procedure
In the beginning, the participants were informed about the proce-
dure as well as the aim and the voluntary nature of the experiment.
During the informing session, each participant was asked to fill in
a questionary about their educational background and familiarity
concerning certain visualizations. Furthermore, two vision tests
were performed, one Snellen chart test to measure visual acuity and
the Ishihara test for color blindness. As a result, we found that all
participants had normal or corrected-to-normal vision, except for
one, who reported to have dyschromatopsia. This participant nat-
urally made less use of color maps but could still work with our
system and accomplish the analysis tasks.

During the introductory session, the participants were given time
to become familiar with the tool, its capabilities, possible views,
and interactions. Here, they were given a small example data set
and a manual describing the tool. Furthermore, they were encour-
aged to ask the experimenter if they were unsure concerning the
interaction with, or content of, views. In the next step, the list of
analysis tasks (see supplemental material) was handed over to the
participant. Before the users had to analyze the two given system
models, they were asked to do some further exercise analyzing the
example data set. The nine analysis tasks have been elaborated to-
gether with the target users from the design process to meet their
analysis requirements for biological system models. The tasks were
grouped into investigative tasks for parameters, fluxes, and concen-
trations. They aimed at the identification of relatively high uncer-
tainties within the system as well as the change of uncertainties
of fluxes and concentrations over time. Another group of analysis
tasks aimed at the identification of correlations between attributes
of the same type, i.e., between parameters, fluxes, or concentra-
tions, but also between fluxes and states. For the latter, correlations
during the steady state were of particular interest. The participants
were also asked to analyze the time course itself, i.e., they were
asked to identify time intervals of drastic changes, and fluxes as
well as concentrations that were subject to strong changes.

Each participant was asked to accomplish these tasks for two dif-
ferent data sets. The participants were asked to “think aloud” [24]
and communicate their thoughts as well as the answers to the anal-
ysis tasks during the experiment. The aim of using this technique
was to understand how they used and interpreted the different avail-
able data views to process the analysis tasks and gain insight into
different data aspects. During the experiment session, the partic-
ipants were observed by the experimenter, who made notes about



the users’ behavior, applied strategies to solve the tasks, used views,
predominant interactions, etc. Furthermore, their interactions and
comments were recorded by a camcorder, to complement the qual-
itative analysis of the participants’ behavior.

After the experiment was finished, the participants were asked to
fill in a questionaire to evaluate the study procedure and the visual
analytics approach using a 5-point Likert scale (see supplemental
material). In particular, they were asked to rate the usefulness of all
single views, possible visualizations of attribute uncertainties and
dynamics as well as included features, like brushing and linking.
The whole study procedure took on average 2 hours per participant.

5.3 Study Results
5.3.1 User Performance
Before we started the user study with the 10 participants, one of
the target users from the design process was passing through the
whole process himself. He analyzed the same two data sets as the
participants of the study, including a system model for insulin sig-
naling and apoptosis. Since he was involved in the design process,
his feedback was not included in the evaluations in Sections 5.3.2
and 5.3.3. However, the results of his data analysis could be used
as “ground truth” to assess the correctness of the participants an-
swers to the analysis tasks. As a result, all participants were able to
accomplish the nine tasks and analyze the data.

5.3.2 Task Specific View Preferences
The aim of the analysis procedure was to investigate user-specific
preferences concerning views and features they used to analyze cer-
tain aspects of the data, such as uncertainty, dynamics, and corre-
lations. We observed that the participants had some preferences in
common, when accomplishing certain tasks.

When searching for the most uncertain parameters of the sys-
tem, most participants (7 out of 10) directly reverted to the table
of mean values and standard deviations. At the latest, when they
had to analyze the local distribution of uncertainties within the net-
work, they used the color mapping of parameter uncertainties onto
edges. Using the table only, it was not possible for them to find out
whether there were subnetworks that were predominantly uncertain
or if uncertainties were equally distributed within the network.

To analyze the time course of flux and concentration values
and related uncertainties, most participants relied on the lineplots,
where half of them used animation as a first tool to obtain an
overview of where and when changes occurred within the network.
However, except for one, all of them used the lineplot to determine
time intervals of and elements affected by strong changes. Many
of them used the “vertical timeline” within the lineplot, which in-
dicates the selected time step and moves when sliding through time
in the main interface, to determine the intervals exactly. The study
confirmed that users prefer static displays over animation, when
they have to analyze time courses. This is not much of a surprise,
as many studies before showed that static views outperform anima-
tions, when visualizing dynamic data.

Almost all participants took advantage of the brushing and link-
ing between the views to allocate lines and edges/vertices, where
some preferred to select elements within the graph display and oth-
ers preferred to select lines within the lineplot. Two participants
used the legend of the lineplot only to allocate elements; these were
participants that did not make use of the available screen space to
arrange the views next to each other. It was observed that in total
three participants tended to maximize all views or at least to arrange
them on top of each other. To take advantage of the linking of views
and to simplify the allocation of elements, it might be reasonable to
embed the views within one window or to support a docking of win-
dows. The latter might thereby be more useful, as we do not want
to show all available views at the same time, but a subset of views
that helps us accomplish a specific analysis task.

When trying to analyze correlations between attribute samples,
the participants mostly looked at the correlation matrix to identify
strong correlations and anti-correlations. To find out whether two
specific parameters were correlated, they looked for the respective
cell of the matrix or selected the respective edges in the graph to
highlight the cell. The other way round, they selected a cell to iden-
tify the corresponding two edges within the graph. Only 3 partici-
pants looked at the scatterplot of two correlated parameter samples
to investigate the kind of correlation and shape of the point cloud.

5.3.3 Subjective Preferences

The participants were asked to evaluate the usefulness of the single
views and features of the tool for the accomplishment of the anal-
ysis tasks. To do so, they were given a 5-point Likert scale from
full agreement (1 = absolutely useful) to full disagreement (0 = not
useful at all).

On average, they judged the correlation matrix as most useful
view (0.925), followed by the lineplot (0.9), graph view (0.85), and
scatterplot (0.813). The histogram was used by only two partici-
pants and was therefore evaluated only by these. The participants
preferred the mapping of the standard deviation to color (0.825)
over the combined mapping of mean value and standard deviation
(0.575). We were not surprised that users prefer to map only one
attribute to color, as most people have difficulties to differentiate
hues and saturations at the same time. However, this does not pose
a problem, as users are usually interested in only one of the two
statistical measures.

Besides the mapping of uncertainty to color, also the visualiza-
tion of the standard deviation over time as half-transparent band
around the line was rated as very useful (0.944). Also brushing
and linking (0.95) and the short flashing of components (0.825) to
attract the users attention to these component were valued to be
useful. To analyze the time course of mean values and standard
deviations, participants preferred the lineplot (0.972) over the slid-
ing through time (0.85) and animated navigation (0.75). This again
confirms that static views outperform animations.

6 CONCLUSION AND OUTLOOK

We have developed a visual analytics system, supporting the anal-
ysis of BRNs and their properties, in particular parameters, fluxes,
and concentrations. These BRNs can be modeled by ODE systems
to answer biological questions, e.g., which components trigger cer-
tain responses or symptoms. These biological questions can only be
answered correctly, if the parameters affecting the kinetics and thus
fluxes and finally concentrations of chemical species are known at
a minimum degree of certainty. In our application, the information
about the parameter and model uncertainty were extracted using
Bayesian parameter estimation. Nevertheless, our visual analytics
system could directly be extended to make use of other methods,
for instance, those presented by Brännmark et al. [8].

The visual analytics approach allows users to identify compo-
nents and subnetworks of the model of relative high uncertainty.
The tool offers several different views onto the data, its statistics
and dynamics. These views are linked with each other to simplify
the allocation of elements within the different views. Based on the
knowledge about uncertain attributes, the user can select and per-
form additional experiments to reduce uncertainties of specific ar-
eas or components of the system.

During the user study with domain experts, we observed that
many users were overwhelmed by the number of available views.
Most of the participants were used to work with simple visualiza-
tions, such as tables and lineplots. Therefore, many participants
first of all made use of these views and only familiarized them-
selves with other available views and color mappings in the course
of the study. For test purposes, one of the two collaborators also



passed through the same study procedure but outside of the evalua-
tion. Compared to the 10 participants, it was much easier for him to
make use of the available views. This indicates that a longer phase
of learning than the participants had during the study is necessary
to take advantage of the diverse views onto the data.

Concerning the analysis tasks, we figured out that almost all par-
ticipants used the color mapping within the network to obtain an
overview about the network attributes and particularly to identify
local hubs (Analysis Task 2), where only half of them used anima-
tion to obtain an overview about the change of attributes (Analysis
Task 4). To gain further insight into the data, they preferred to use
“external views” to process Analysis Tasks 1, 3, and 5. When do-
ing so, almost all of them took great advantage of the brushing and
linking between the views to allocate elements.

In the future, we want to extend the tool to support the compari-
son of different sampling runs by loading several sets of samples for
parameters, fluxes, and concentrations for the same network struc-
ture. The reactions of the networks we have analyzed so far were
all based on simple kinetics. More complex kinetic equations in-
volve up to three reaction rate coefficients and hence parameters
per reaction. It should therefore be possible to visualize up to three
parameters per edge, e.g., by splitting the edge into subelements.
Furthermore, the measured quantities (outputs) used for parame-
ters estimation (see Section 2.3) should be integrated and visualized
within the system, e.g., using lineplots.
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