
Faraday Discussions
Cite this: Faraday Discuss., 2014, 169, 179

PAPER
Visualising intrinsic disorder and
conformational variation in protein
ensembles†

Julian Heinrich,*ab Michael Krone,a Seán I. O'Donoghuebc

and Daniel Weiskopfa
Received 14th December 2013, Accepted 20th February 2014

DOI: 10.1039/c3fd00138e

Intrinsically disordered regions (IDRs) in proteins are still not well understood, but are

increasingly recognised as important in key biological functions, as well as in diseases.

IDRs often confound experimental structure determination—however, they are present

in many of the available 3D structures, where they exhibit a wide range of

conformations, from ill-defined and highly flexible to well-defined upon binding to

partner molecules, or upon post-translational modifications. Analysing such large

conformational variations across ensembles of 3D structures can be complex and

difficult; our goal in this paper is to improve this situation by augmenting traditional

approaches (molecular graphics and principal components) with methods from

human–computer interaction and information visualisation, especially parallel

coordinates. We present a new tool integrating these approaches, and demonstrate

how it can dissect ensembles to reveal functional insights into conformational variation

and intrinsic disorder.
1 Introduction

Over the past decade, the role of intrinsically disordered regions (IDRs) in
proteins has been increasingly recognised as important, especially in eukaryotes.
These regions are now known to play key roles in many biological functions, in
regulatory control, and in many diseases.1 The presence of IDRs in a protein is
believed to oen confound experimental structure determination, although these
regions are present in many of the available 3D structures.2 Some insights have
been gained from examination of structures containing IDRs; in particular, it has
become clear that IDRs can exhibit a wide range of structural conformations,
from ill-dened and highly exible to well-dened, upon binding of partner
aVISUS, University of Stuttgart, Germany. E-mail: {kroneml|weiskopf}@visus.uni-stuttgart.de
bCSIRO Computational Informatics, Sydney, Australia. E-mail: julian.heinrich@csiro.au
cGarvan Institute of Medical Research, Sydney, Australia. E-mail: sean@odonoghuelab.org

† Electronic Supplementary Information (ESI) available: http://bit.ly/mega-ensemble

This journal is © The Royal Society of Chemistry 2014 Faraday Discuss., 2014, 169, 179–193 | 179



Faraday Discussions Paper
molecules, or upon post-translational modications.1 Overall, however, many
aspects of intrinsic disorder in proteins remain poorly understood.

Many structural studies of IDRs have used homogeneous ensembles, i.e.,
ensembles composed of identical molecules that differ only in their 3D confor-
mation. This includes ensembles derived from molecular dynamics (MD) simu-
lations, where snapshots are taken at different time points. While MD can be
powerful, it is oen not feasible to compute sufficiently long trajectories to study
key effects on IDRs, such as the binding of partner molecules. A second source of
homogeneous ensembles that has been used to characterise IDRs are protein
structures determined by nuclear magnetic resonance (NMR) studies.3 These
ensembles oen exhibit large conformational variations that are widely believed
to correlate with the dynamic behaviour of proteins in solution. However, there is
good evidence that this belief may be wrong, and that variations observed in NMR
ensembles derive primarily from a lack of data to describe the structure fully.4 In
contrast, when structures are derived from X-ray crystallography, any regions
lacking sufficient data are simply removed, leaving apparent gaps in the poly-
peptide chain. A similar approach should probably be taken when using NMR
ensembles to study IDRs: regions of the structure with little or no experimental
data should oen be removed from the analysis. When not removed, this may
lead to overestimating the conformational variation of IDRs.

In this work, we focus on ensembles that are more heterogeneous, namely
ensembles that contain all experimentally-determined structures that are judged
to be signicantly similar to one ‘target’ protein sequence, based on a template-
based structure prediction method.5 Currently, such ensembles are readily
available for many proteins, oen containing information on interactions with
other proteins, DNA, RNA, or small molecules—such ensembles are likely to be
of increasing signicance for molecular biologists, as more structural data
becomes available. Examining these ensembles can reveal a wealth of molecular
detail on the range of conformations adopted with different binding partners,
and can provide insight into IDRs, as these ensembles can capture ranges of
conformations across different crystal packing environments, different experi-
mental conditions, and across different molecular complexes. However, these
ensembles can be quite complex, with sometimes hundreds, or even thousands of
structures.

There are many methods to facilitate the analysis and visualisation of struc-
tural ensembles, one of the most widely used being principal components and
related methods, which are typically used to nd correlated motions6 either in
NMR ensembles or in crystal structures.7 Such dimension reduction methods are
useful for simplifying the resultant visualisations, thus aiding interpretation.
However, it remains challenging to augment information about the spatial
position of atoms, residues, or secondary structure elements with further attri-
butes such as solvent accessibility, electrostatics, etc. Most methods developed to
date focus either on homogeneous ensembles, or on ensembles of structural
families,8 which typically include a very diverse range of proteins. The ensembles
considered in this work are an intermediate case, and there are few methods for
using these ensembles to efficiently gain functional insight into IDRs or other
aspects of conformational variation. A key problem with visualising such
ensembles is that they are oen highly cluttered, particularly in those regions that
exhibit high exibility.
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Table 1 Residue attributes used in the parallel-coordinates view

Label Description

2nd Secondary structure state of residue determined by STRIDE.12

Contacts Molecule in contact with current residue.
IUPRED Predicted disorder score for current residue.13

Phi The f backbone angle for the current residue.
Psi The j backbone angle for the current residue.
Position Residue position in alignment to the target sequence.
RMSFi Root mean square uctuation of the Euclidean distance of the Ca atom

position to the i-th eigenvector.
RMSF Root mean square uctuation of the Euclidean distance from the Ca atom to

the mean structure.
SAS Accessible surface area computed with the double cubic lattice method14 via

STRIDE.
Type The amino acid type (mapped to arbitrary integer).
Chain PDB15 chain identier (mapped to arbitrary integer).
ID PDB identier (mapped to arbitrary integer).
PCAi 3D coordinates of current structure projected along i-th principal

component.6

RMSD Root mean square deviation of current structure from the top-ranked
structure.16
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To address these challenges, we propose using parallel coordinates9 in concert
with traditional methods such as principal component analysis (PCA) and
molecular graphics for the analysis of intrinsic disorder and conformational
exibility in heterogeneous protein ensembles. The use of parallel coordinates
allows simultaneous visualisation of high-dimensional data—such as multiple
attributes (see Table 1) from structure ensembles—and is particularly useful to
facilitate exploring and nding patterns in the data. In this paper, we construct a
multiple view setup10 that allows residues selected in parallel coordinates to be
directly highlighted in a 3D molecular graphics view via brushing-and-linking.11

2 Related work

The visualisation of homogeneous ensembles is particularly well supported by the
VMD17 molecular graphics tool, as well as other popular tools such as PyMOL18 or
Chimera.19 Typically, all structures in an ensemble are visualised aer being
superimposed by minimising the root mean square deviation (RMSD) of the
corresponding backbone atoms in the structure, typically using algorithms like
those of Kabsch16 or Coutsias et al.20 However, the use of the superimposition
approach quickly becomes limited for ensembles containing many structures or
those exhibiting large conformational diversity. Therefore, in addition to the
generic dimension reduction approaches mentioned above, a range of more
tailored approaches have been developed to suit particular cases.

For visualising NMR ensembles, several specialised tools have been developed.
One such tool is MOBI,21 which compute a mobility score for the amino acid
backbone, based on a combination of Ca interatomic distances and f and j

angles, then visualises the score using a colour-code mapped onto 3D structure
representations. Another tool developed specically for NMR ensembles is
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MolMol,22 which offers a ‘sausage’ visualisation, where a protein's backbone is
represented by a tube of variable diameter, scaled according to the mobility of
each amino acid.

For visualising MD simulations, specialist systems have been created for
studying overall motions, including hierarchical, multiresolution trees,23 as well as
interactive linking between alternative visualisations (e.g., DIVE24). In addition,
methods have been developed for studying even more specialised cases, such as
transient cavities25 ormolecular diffusion events.26MostMDmethodsmake explicit
use of temporal ordering, which is lacking in the ensembles studied in this work.

The above tools typically make use of a range of abstract visualisation
methods. One of the rst and most popular non-spatial visualisations in struc-
tural biology is the Ramachandran plot27 for the investigation of the distribution
of backbone torsion angles with respect to secondary structure elements. Other
examples include hydropathy plots, RMSD plots, contact maps—for a recent
review, see O'Donoghue et al.28

This work focuses on an abstract visualisation method—the parallel-coordi-
nates plot9—that has not previously been applied to ensembles of molecular
structures, or to intrinsic disorder. This method has been used to visualise high-
dimensional data across various application domains, including bioinformatics29

and systems biology,30,31 where it has been shown to be useful for the analysis of
regulatory networks or gene expression (see Heinrich and Weiskopf32 for a recent
survey).

We only found two previous reports using parallel coordinates with protein
structure data. The rst was from Luke33 using parallel coordinates to visualise the
conformation of the tetrapeptideMet-enkephalin using separate coordinate axes for
each rotatable bond in the molecule, similar to the Ramachandran plot. However,
this does not scale well as the number of axes increases with the protein size. The
second application was from Becker,34which took a similar approach, but used only
main-chain dihedral angles for conformational analysis of proteins. Becker recog-
nised three major advantages of using parallel coordinates for conformational
analysis: (i) multiple conformations can be displayed in the same plot, (ii) different
types of axes can be mixed in a single plot, and (iii) dynamic clustering and ltering
(hiding) can be conducted based on patterns emerging from the plot.

In this work, we further extend these approaches with a richer set of attributes,
scalability, interactivity, multiple linked views,10,11 and the integration of statis-
tical methods in the analysis process.
3 Methods

For this work, a plugin to the MegaMol™ framework35 was implemented to load
sets of PDB15 les, and compute a set of attributes to be used for the parallel-
coordinates plot. The system was built using C++ and OpenGL and tested on a
Windows workstation with an Intel Core i7, 6 GB RAM and an NVIDIA GeForce
GTX 680 (4 GB VRAM).
3.1 Data preparation

We selected three well-studied human proteins where IDRs and conformational
variation were believed to inuence function (p53, RXR-a, and H2B). In each case,
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multiple experimentally determined structures are available—either for that
sequence or highly similar sequences—that include a range of residues predicted
to be disordered (determined using an IUPRED13 score $0.5). In addition, the
available structures include many cases with multiple partner molecules. We
derived structural ensembles for each target protein sequence with the template-
based structure prediction tool HHblits,5 using it to nd and align all PDB
structures with a signicantly similar sequence. We included only structures with
an expected value of <10�10, a threshold recommended to ensure that all struc-
tures are likely to have a similar fold to the target protein.36,37

The three resulting ensembles of PDB structures represent structural varia-
tions observed using different experimental methods (NMR, crystallography)
across related proteins from several different organisms, and in the presence of a
range of binding partners (e.g., DNA or other proteins). For every structure, the
HHblits output was used to produce an alignment between each residue in the
ATOM records of the PDB le with a corresponding residue in the UniProt38

sequence of the target protein.
Structures in the resulting ensembles were then clustered based on the region

of the match to the full-length protein sequence. We selected one cluster for each
sequence—corresponding to one sequence domain—that had a manageable yet
sufficiently diverse set of PDB structures (from 47 to 78 cluster members).
Structures in the cluster where ranked rst by the number of identical residues to
the full-length UniProt sequence; in the case of matches, PDB structures were
then ranked by crystallographic resolution, with NMR structures ranked last. The
clustering and ranking were performed using the Aquaria resource, currently in
development at CSIRO and Garvan (http://aquaria.ws).

To prepare for visualisation and further analyses, each structure in an
ensemble is superimposed onto the top-ranked structure using the Kabsch
algorithm,16 and the respective RMSD is recorded. For NMR structures consisting
of multiple models, we used only the rst model occurring in the PDB le. For
each member of the ensemble, a set of additional attributes were computed.
These attributes were selected to reveal different structural aspects that relate to
both conformational variation and intrinsic disorder. The attributes are sum-
marised in Table 1, and are further described below:

Secondary structure elements, backbone torsion angles, as well as the solvent
accessible area per residue were computed via STRIDE.12

Intermolecular contacts were dened as follows: for each atom of each residue
of the target protein, we searched within a distance of 5 Å—if any atoms were
found within this distance belonging to another molecule in the PDB structure,
this molecule was considered to be in contact with that protein residue.

For the ensemble, we computed a mean backbone structure by averaging the
coordinates of superimposed Ca positions for all residues that HHblits matched
to the residues in the query UniProt sequence. This mean structure was used to
calculate a root mean square uctuation (RMSF) for each Ca atom, providing a
measure of local spatial variation at each residue.

In order to study correlated variations in structure, we applied PCA to each
nal ensemble using a standard approach6 developed for analysing MD simula-
tions. Here, a covariance matrix of atom coordinates is calculated and diagonal-
ised to obtain the principal modes that describe most of the spatial variation
within the ensemble. As all structures were superimposed prior to applying PCA,
This journal is © The Royal Society of Chemistry 2014 Faraday Discuss., 2014, 169, 179–193 | 183
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variations caused by the rotation and translation of a whole structure do not affect
the computation. Again, only a-carbons are used. For the construction of the
covariance matrix, only residues aligned to the target sequence in all members of
the ensemble are considered (i.e., gap residues were excluded).
3.2 Visualisation

We constructed a visualisation system using traditional 3D molecular graphics
methods28 to represent ensembles in a spatial context, in concert with a parallel-
coordinates view to display additional multidimensional information about the
same data set. The system allows users to select residues in parallel coordinates
that exhibit certain attributes, with brushing-and-linking allowing the selection to
be assessed in the spatial view.

The 3D view supports most commonly used molecular rendering modes,
including ball-and-stick, stick, spacelling (van-der-Waals), cartoon,39 solvent
excluded surface (SES),40,41 and Gaussian surfaces42 (see Fig. 1 for examples of a
spline and stick rendering). Depending on the type of analysis to be conducted
and the question to be answered, the standard practise inmolecular graphics is to
encode additional attributes (such as secondary structure, electrostatics, hydro-
phobicity, etc.) using colour or glyphs to be visualised together directly with the
3D structure in a spatial context. This approach works well for small numbers of
attributes, but can become cumbersome for tasks that require consideration of
many different attributes—the current standard practise is to enable switching
between attributes, or to use multiple 3D visualisations. This can become tedious,
especially for ensembles, which can impede the discovery of patterns in the data,
such as relationships, clusters, dependencies, or outliers.

To facilitate the analysis of disorder in ensembles of structures, we augmented
the traditional molecular graphics view with parallel coordinates,9 which allow
simultaneous visualisation of a large number of attributes across whole ensem-
bles. In parallel coordinates, multidimensional data is represented by a set of axes
arranged in parallel, as opposed to the orthogonal layout of axes in Cartesian
coordinates. A data point inmultidimensional space is thenmapped to a poly-line
(a set of line segments) in parallel coordinates, intersecting each axis at its
respective coordinates. A point-line-duality between 2D Cartesian and parallel
coordinates guarantees a unique mapping of patterns from a 2D scatterplot to a
2D parallel-coordinates plot and vice-versa. This allows us to incorporate well-
known statistical plots such as the Ramachandran plot27 into a parallel-coordi-
nates system of protein ensembles. In addition, parallel coordinates allow us to
visualise an arbitrary number of dimensions in a single plot, which can be useful
to visually spot multidimensional outliers or clusters in the data and thus provide
an analyst with information about protein ensembles that might be difficult or
impossible to see using an isolated spatial view.

In our implementation, each poly-line represents a residue in one PDB structure,
and each axis represents a residue attribute described in Table 1 (see also Fig. 1). In
order tomap categorical data to axes in parallel-coordinates, we cast non-numerical
attributes (such as ‘ID’ or ‘Type’) to unique integers with no specic order. As a
result of our residue-based representation, lines having an attribute in commonwill
cross at the same point on that attribute axis; for example, all a-helical residues will
cross the secondary structure axis at the same point. Axes are rendered as vertical
184 | Faraday Discuss., 2014, 169, 179–193 This journal is © The Royal Society of Chemistry 2014



Fig. 1 Mapping residue attributes to poly-lines in parallel coordinates. This figure shows two
representations (spline and stick, top) of a single structure from the PDB (3d06) and its
representation in parallel coordinates (bottom). Each residue is represented as a poly-line (a
set of line segments) crossing a set of axes, corresponding to attributes of the residue. Note
that for some attributes (such as the PDB ‘ID’), all lines from residueswithin the same structure
will cross at the same point on the respective axis. In this view, the ‘2nd’ axis (for secondary
structure) was used to brush residues composing a-helices (red) and b-strands (blue).

Paper Faraday Discussions
lines with labels for theminimum andmaximum of the respective dimension (note
that we omit some labels in the gures for the sake of clarity). Since the order of
axes is crucial for the determination of patterns in the data, our tool allows the
order to be changed interactively.

As is typically done in parallel-coordinates views, our tool allows the user to
select lines (representing residues), and to brush the selection with a user-dened
colour. Selected residues are also immediately highlighted in the spatial view
using the same colour. Furthermore, selection can be used to dene a set of
structures to be removed in both views (called ltering, as every structure that
contains at least one selected residue is removed from the ensemble) or to hide
lines in parallel coordinates; these simple but powerful features enable the user to
interactively explore the ensemble based on attributes in parallel coordinates.

To further facilitate interactive exploration, we tailored our system for fast
rendering. For the spatial view, we chose to represent the polypeptide backbone
This journal is © The Royal Society of Chemistry 2014 Faraday Discuss., 2014, 169, 179–193 | 185



Fig. 2 P53 ensemble of 72 PDB structures, many containing partner proteins and DNA
molecules (top left). Our system allows interactive dissection of the ensemble by hiding or
revealing structures via selection of attributes from the parallel-coordinates view
described in Table 1. The top right view was created from the original ensemble (top left)
by a parallel-coordinates selection matching all PDB chains not aligned onto p53 (grey
brush in the bottom plot), then filtering all structures that contain brushed residues.
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using lines or splines (similar to the cartoon model), which was usually effective
in providing a cogent visualisation for each of the ensembles used.

Initially, the ensembles used in this study tended to be visually cluttered due to
the presence of multiple different molecules in various PDB les. With our tool, a
user can easily focus on particular parts of the ensemble by selecting attributes
from the parallel-coordinates view. For example, as a rst step in our analyses, we
used our tool to show only one chain in each PDB structure, namely the chain that
aligns onto the target sequence (or the rst such chain, in the case of oligomers)—
see Fig. 2 (top).

We also designed our tool to automatically update the attributes of all parallel-
coordinates axes whenever the user lters structures. For instance, this update
process completely recalculates the PCA, based only on the currently visible
structures and updates the 3D superposition using the top-ranked, non-hidden
structure as the target structure.

4 Results

In this section, we tested our system by applying it to investigate the three protein
ensembles described in Section 3.1. We show how our approach helped to gain
insights into the relationship between intrinsic disorder and structural variation
for these proteins.

4.1 Cellular tumour antigen P53

The ensemble for the human protein cellular tumor antigen p53 consists of a set
of 72 PDB structures that have been aligned to residue positions 94 to 295 of the
186 | Faraday Discuss., 2014, 169, 179–193 This journal is © The Royal Society of Chemistry 2014



Fig. 3 Disorder and intermolecular contacts in the p53 ensemble. Left: Brushing was used
to colour red all residues with visually outlying RMSF values (>3.8 Å)—all are predicted to be
disordered (i.e., have IUPRED score$0.5). However, many of the residues predicted to be
disordered have low RMSF (blue). Right: Brushing in parallel coordinates allows users to
focus on particular partner molecules. In this example, the ‘Contacts’ axis was used to
highlight residues of p53 (red) in direct contact with DNA.

Fig. 4 Finding sub-states in the p53 ensemble. Left: From the set of ‘PCA’ axes, two
prominent outliers in the ensemble are brushed red. Both structures show very different
backbones from the ensemble all over the sequence. These outliers were removed for
subsequent steps, causing all attributes of the parallel-coordinates plot to be recomputed
automatically. Right: Of the remaining structures, selecting from the now updated ‘PCA1’
axis reveals another subset (red) with distinctly different structure—and somewhat higher
apparent disorder—compared to the core ensemble (grey). From the ‘Chain’ axis, we see
that this subset is composed of molecules p63 and p73 (Uniprot accessions Q9H3D4 and
015350), both close relatives of p53.
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full-length sequence in UniProt (primary accession P04637). This region of p53 is
known to bind DNA (e.g. 1TSR, 2AC0), as well as partner proteins, such as p53
binding protein 1 (1GZH). Fig. 2 shows the initial view, with all PDB structures
superimposed (top le) plus a view showing only PDB chains directly aligned onto
p53.

From the 3D view, it seems that most structures form a rather rigid core, with
two outlying regions of high conformational variation—one at the N-terminal a-
helix and a second between residues 180 and 190. Applying our tool to this
ensemble revealed that residues with very high observed disorder (RMSF) always
had high predicted disorder (IUPRED), while the converse was not true (Fig. 3).
Fig. 4 further illustrates how our tool can be used to successively dissect the p53
ensemble, for example by identifying and removing structures from divergent
protein sequences, ultimately deriving a subset of highly similar structures that
can be used, e.g., to derive relationships between disorder and secondary struc-
ture (Fig. 5).
This journal is © The Royal Society of Chemistry 2014 Faraday Discuss., 2014, 169, 179–193 | 187



Fig. 5 Relationship between disorder and secondary structure in the p53 ensemble. Left:
In this figure, the ‘2nd’ axis (secondary structure) was used to brush a-helices (red) and b-
strands (blue). The parallel-coordinates plot shows that helices in this ensemble are more
likely to contain disordered residues than b strands, based on both IUPRED score and
RMSF. The ‘Phi’ and ‘Psi’ axes show the expected configurations for both types of
secondary structures, in accordance with the corresponding regions in the Ramachandran
plot. Right: Brushing the ‘2nd’ and ‘Position’ axes reveals residues that adopt different
secondary structures across the ensemble. a-helices are shown in red, b-strands in blue,
and coils in green. The plot indicates that only a small fraction of residues with ambiguous
secondary structure have been predicted to be disordered by IUPRED. Among these, most
are associated with low RMSFs. Next steps in the analysis might include filtering by
‘Contacts’ to investigate the source of the variation in secondary structure.

Fig. 6 Successive filtering of sub-states within the RXR-a ensemble. The pattern of lines
across the ‘PCA’ axes clearly shows two distinct clusters (left). Brushing the small cluster
(red) allows to remove the corresponding structures from the ensemble, and all attributes
to be recomputed. The same procedure can be repeated until only a set of highly similar
structures remains (right).
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4.2 Retinoic acid receptor RXR-a

This example encompasses 78 structures that were aligned to residues 132 to
241 of human protein retinoic acid receptor RXR-a (P19793). The ensemble
initially shows a high degree of variation; one large cluster of similar confor-
mations can be seen, as well as two small clusters (Fig. 6). Using the principal
component axes in the parallel-coordinates plot (in particular ‘PCA3’ and
‘PCA4’), we were able to quickly identify and brush the smaller cluster. Fig. 6
shows two brushing and ltering steps used (from le to right) to lter out these
sub-clusters; the remaining cluster, comprising most of the structures, was then
examined for disordered regions. Fig. 7 compares residues with high predicted
disorder (blue) versus those with high observed disorder (red). The blue selec-
tion includes many regions with very low observed disorder (e.g. the helices).
Upon visual examination of the disordered region (bottom le in the 3D
rendering in Fig. 7), we found a distinct cluster of structures that could be
188 | Faraday Discuss., 2014, 169, 179–193 This journal is © The Royal Society of Chemistry 2014



Fig. 7 Predicted vs. observed disorder for the RXR-a ensemble. Blue indicates residues
predicted to be disordered (IUPRED score$0.5), while red indicates residues with visually
outlying RMSF values (>5.2 Å). Note in the 3D structure the red colouringwas rendered last,
and hence conceals some residues coloured blue. The ‘Position’ axis shows the position of
the selected amino acids in the sequence. As with p53, residues with high observed
disorder (RMSF) tend to have high predicted disorder (IUPRED), however the converse
trend is not as clear.

Fig. 8 Disordered region in the RXR-a ensemble. In the disordered region to the right,
some structures form a relatively ordered subset, which has been selected (in red) by
brushing the ‘PCA3’ axis. Looking at the ‘Contacts’ axis shows that all members of the
ensemble that form the red cluster bind to the same protein (PPAR-g), whereas none of
themembers that bind to another protein follows this conformation (blue selection). Thus,
binding of PPAR-g appears to induce order in this region.
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highlighted using the third principal component (Fig. 8). Comparing the spatial
views of Fig. 7 and 8 further shows that these structural differences are corre-
lated with differences in other disordered regions of the ensemble. Aer adding
the ‘Contacts’ axis to the parallel-coordinates plot, we can see that these
structures are bound to the same partner protein (PPAR-g, P37231, see right-
most axis in Fig. 8). Obviously, this conformation is not a requirement for
binding PPAR-g, as there are other structures in the ensemble that also bind to
PPAR-g (grey). However, this special conformation seems to prevent the binding
of other possible binding partners (blue in selection in Fig. 8).
This journal is © The Royal Society of Chemistry 2014 Faraday Discuss., 2014, 169, 179–193 | 189



Fig. 9 Predicted vs. observed disorder for the H2B ensemble. Blue indicates residues
predicted to be disordered (IUPRED score $0.5). Red indicates residues with visually
outlying RMSF values ($2.2 Å), i.e., residues with high observed disorder. High observed
disorder always corresponds to high IUPRED scores, but the converse is not true.
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4.3 Histone H2B

This ensemble consists of 49 structures aligned to residues 30 to 127 of the
human protein histone H2B (Q96A08). Overall, these structures are highly similar,
with only two comparably small regions of disorder at the N- and C-termini (see
Fig. 9). As with the previous two ensembles, all residues with highly divergent
RMSF values also had high IUPRED scores, while the converse was not true.
5 Discussion

Our tool has many more capabilities than could be presented here, however the
cases included in the Results demonstrate that the tool can be useful in dissecting
protein ensembles.

Some key trends emerged from the Results. In some cases, we see that binding
of partner molecules appears to stabilise regions that are otherwise disordered.
This may explain the lack of observed disorder in many residues that were pre-
dicted to be disordered, especially for the H2B ensemble, in which all structures
have been derived in complex with other histone proteins. The correlation of
disorder with secondary structure observed in Fig. 5 is also interesting, and may
merit further investigation using a larger set of ensembles.

However, the clearest trend to emerge was that in all three ensembles, all
residues with high observed disorder (i.e., outlying RMSF values) were predicted
to be disordered (IUPRED score $0.5). Similarly, the converse was consistently
not observed, i.e., many residues predicted to be disordered had low RMSF. Like
many other methods for predicting disorder, IUPRED is based purely on
sequence, and measures the propensity of a sequence region to exhibit disorder,
using only amino acid properties. Our results support the suggestion that IUPRED
has high recall, but not high precision, for the task of predicting disorder in the
heterogeneous ensembles used in this study. Stated another way, our results
suggest that many of the residues predicted by IUPRED to be disordered are false
positives. However, it is important to note that for the ensembles used in this
study, the observed RMSF values may differ considerably from the ‘true’ disorder
190 | Faraday Discuss., 2014, 169, 179–193 This journal is © The Royal Society of Chemistry 2014
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that occurs when these proteins are alone in solution, with no partner mole-
cules—which is the state that IUPRED aims to predict. In contrast, the ensembles
we used contained many structures with partner molecules, and almost all were
derived from proteins in a crystalline state, not in solution. Nonetheless, such
ensembles are a rich and detailed source of experimental data that we believe will
be very useful in helping to improve our understanding of the functional roles
and mechanisms of IDRs.

Overall, the results demonstrate that our tool makes it easy to explore inter-
relationships in these heterogeneous structural ensembles; in the near future, we
intend to use our approach to look at a broader range of cases and, if these trends
are maintained, to further test if these trends are statistically signicant.

While we are using traditional molecular graphics techniques, the parallel-
coordinates view greatly facilitates ensemble exploration by showing a large
amount of additional information about the ensemble that otherwise would be
hidden or difficult to see with a conventional molecular graphics approach. The
combination with a spatial 3D view of the molecular structures further enables
the analyst to cross-check selected patterns in a well-known environment. The
use of parallel coordinates is powerful yet relatively easy to implement, and
hence is a good candidate for inclusion in popular molecular graphics tools,
such as VMD,17 PyMol18 or Chimera.19 Such an inclusion would signicantly
extend the range of attributes, database support, and usability features
compared to that currently available in our implementation, which is a research
prototype.

There are some points that need further consideration when using parallel
coordinates. One of themost criticised aspect is that patterns depend on the order
of axes. There are several approaches to meet the challenge of nding a ‘good’ axis
order: Some authors proposed using an automatic ordering based on various
measures such as correlation coefficients or distance metrics (see Heinrich and
Weiskopf32 for an overview), others use manual, interactive reordering of axes (as
we did for the system presented in this paper) or show all pairwise correlations in
a matrix of parallel-coordinates systems.43

For very large ensembles and large structures, it may be useful to modify our
approach, for example by adding another level of aggregation and compute
statistics for whole chains or structures, instead of single residues. This would
greatly reduce the number of graphical primitives that may occur, and so improve
rendering speed. In part, this has been realised implicitly in our system for axes
that depict information on a chain or structure basis (such as the ‘Chain’ or
‘RMSD’ axes).

In the future, we plan to extend our tool to achieve a tighter coupling
between the parallel-coordinates plot and the 3D visualisation, for example by
adding colour maps to an axis, thereby allowing users to select a parallel
coordinate axis and to colour-code the 3D models according to the values on
this axis (e.g. using a cool–warm shading). We also plan to add specialised
protein ensemble representations (e.g. the ‘sausage’ visualisation used in
MolMol22), and to add a range of further protein structure attributes—this
will allow us to add further dimensions to the parallel coordinates and
potentially nd new patterns in the ensembles. Finally, we also plan to
investigate the usefulness of this approach for analysing molecular dynamics
simulations.
This journal is © The Royal Society of Chemistry 2014 Faraday Discuss., 2014, 169, 179–193 | 191
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6 Conclusion

Adding views to a system that show different aspects of the data is a well-known
and frequently practised approach for a wide range of applications. In this paper,
we have shown that parallel coordinates can be a useful add-on to a molecular
graphics environment. Applied to the rather complex use-case of analysing
protein ensembles, the approach enabled us to dissect these complex datasets,
and gain some insight into the correlation between observed and predicted
disorder.
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