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Figure 1: Taxonomy of topics for parallel coordinates in the scientific literature. The first-level nodes each represent a section
in this paper, where the scope and definition of each topic will be explained.

Abstract

This work presents a survey of the current state of the art of visualization techniques for parallel coordinates. It
covers geometric models for constructing parallel coordinates and reviews methods for creating and understand-
ing visual representations of parallel coordinates. The classification of these methods is based on a taxonomy that
was established from the literature and is aimed at guiding researchers to find existing techniques and identifying
white spots that require further research. The techniques covered in this survey are further related to an established
taxonomy of knowledge-discovery tasks to support users of parallel coordinates in choosing a technique for their
problem at hand. Finally, we discuss the major challenges in constructing and understanding parallel-coordinates
plot and provide some examples from different application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Parallel coordinates is a widely used visualization technique
for multivariate data and high-dimensional geometry. Since
their first appearance in the scientific literature in the con-
text of Nomography [Mau85], parallel coordinates have be-
come a well-known visualization for exploratory data analy-
sis [Weg90] and visual multidimensional geometry [Ins09].
The theory of parallel coordinates has been developed rigor-
ously and the point–line duality has been successively gener-

alized to higher dimensions [Ins85]. There are many visual-
izations that are related to parallel coordinates either by shar-
ing the typical parallel layout of axes or the mapping of data
samples to lines, as in stock-market diagrams, temperature
forecasts, N and M plots [DF83] or Andrews plots [And72].
The relation to such familiar diagramming techniques is cer-
tainly one of the reasons of the rising popularity of parallel
coordinates: the number of publications with the term “par-
allel coordinates” in the title has been rising steadily from 14
in the year 1991 to approximately 543 in 2011, with a total
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of 5620 publications as reported by Google scholar on the
15th of December, 2012.

This paper presents a survey of recent developments
of parallel coordinates with a strong focus on visualiza-
tion techniques and is aimed to complement Inselberg’s
textbook [Ins09], which represents the state-of-the-art of
parallel-coordinates theory. The contributions of this work
are

• A taxonomy and survey of techniques with respect
to modeling, visualizing, understanding, and interacting
with parallel coordinates.
• A classification of common tasks in knowledge discovery

with respect to our taxonomy.
• A discussion of the challenges for visualizing parallel co-

ordinates.
• A pointer to the literature for the aspects covered by the

taxonomy.
• An overview of applications of parallel coordinates in var-

ious domains from the life sciences and engineering.

Note that we deliberately retain from comparing the visu-
alization techniques presented here with other methods (in-
cluding the original parallel coordinates) nor do we evaluate
or validate the methods with respect to performance or ap-
plicability to real data, as this would be out of the scope of
this state-of-the-art report. The intend of this work is to give
an overview of existing visualization techniques for paral-
lel coordinates and to provide pointers into the literature for
further information.

The taxonomy given in Figure 1 was established from the
scientific literature about various topics regarding parallel
coordinates. It is targeted at identifying research directions
and providing a classification scheme at different levels of
abstraction. This is helpful as a guide for (i) scientists to
identify areas that require further research and for (ii) users
of parallel coordinates to provide an overview of available
techniques and possible challenges. At the top-level, we dis-
tinguish between geometric models as the theoretical foun-
dation of parallel coordinates from the more technical parts
dedicated to image generation and image analysis.

In addition to the taxonomy, we identified a set of chal-
lenges a user might be faced with when working with paral-
lel coordinates. We summarize these challenges and provide
links to the sections of this work and to the literature in order
to address them. Finally, we present a set of selected applica-
tions by domain to give examples of the wide range of data
types that have been visualized with parallel coordinates.

We use an established taxonomy [FPSS96a] to relate the
techniques covered in the following sections to a set of
high-level tasks that support the knowledge-discovery in
databases (KDD).

Classification is the task of mapping data samples to a set
of predefined classes. A typical technique in interactive vi-
sualization environments that supports the classification of

samples is brushing (Section 5.1.1). Brushing is typically
used to select data points which are then subject to further
processing, such as learning a classifier [AA99, TFA∗11].

Regression is a common task for predicting the values of
a dependent variable with respect to one or more indepen-
dent variables. Parallel coordinates can be used for “visual
regression” [WL97] or to visualize statistical properties of
regression models [UVW03, DHNB09, SSJKF09].

Clustering is the identification of sets of data items ex-
hibiting similar characteristics. There is a wide range of au-
tomatic clustering techniques which typically depend on the
similarity measure being used. Parallel coordinates can be
used for “visual clustering”, i.e. to find groups of similar
points based on visual features such as the proximity of lines
or line density. Another application for which parallel coor-
dinates are frequently used is the visualization of precom-
puted clusters and their characteristics, typically using color
or geometry-based visual cues.

Summarization refers to the computation of aggregated
data and usually involves loss of information. Visualization
is considered a summarization technique in KDD because
it requires multivariate data to be projected to two dimen-
sions. From a visualization viewpoint, the presentation of
an overview is what probably best describes the summariza-
tion task. This is an important task and the starting point
of the information-seeking mantra [Shn96]. There are many
approaches to show aggregated information in parallel co-
ordinates, either as additional visual items, or by represent-
ing sets of items using alternative visual encodings such as
envelopes of lines [Ins09] or density [MW91, HW09] (see
Section 3.1).

Dependency-modeling is the process of establishing
qualitative or quantitative dependencies between variables.
Linear correlation between two variables is the most com-
mon dependency that can be visualized in parallel coordi-
nates as a result of the point–line duality. The quantification
of dependencies is an important measure for determining the
relative importance of dimensions that can be used to order
axes in parallel coordinates. The axis-ordering problem is
discussed in more detail in Sections 3.2, 5.2, and 6.2.

Change and deviation detection includes the detection
and visualization of outliers or other anomalies of the data
with respect to some previously known measure. For exam-
ple, data samples can be classified as outliers using a den-
sity estimation [NH06] based on parallel coordinates of the
raw data. The detection of abnormal behavior using paral-
lel coordinates is also an important task in process control
applications [DEN12].

2. Geometry

A coordinate system provides a scheme for locating points
given its coordinates and vice versa. The choice of coordi-
nate system is therefore an important step in visualizing data,
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Figure 2: The notation used for different domains. The spatio-temporal domain (left) describes events in space and time with
up to 4 dimensions. Many datasets describing abstract data are defined in the data domain (middle) with a finite number of
dimensions. The parallel-coordinates domain (right) refers to the xy-plane in Cartesian coordinates which is used to construct a
parallel-coordinates system. See Section 2 for an explanation of the point–line duality illustrated above.

as it transforms the geometry representing the data that is
being visualized. With coordinate transformations, straight
lines (e.g. in Cartesian coordinates) can be mapped to curves
(e.g. in polar coordinates) or to points (e.g. in parallel co-
ordinates). The choice of coordinate system determines the
patterns exhibited by a visualization to a large part and there-
fore it is important to know how to “read” it. After introduc-
ing the notation used in this work, the construction of paral-
lel coordinates is briefly described and two models that can
be used for the transformation of data points from Cartesian
coordinates to parallel coordinates are discussed.

Parallel coordinates can be used to visualize geometry
that represents data in multiple domains. Here, the term “do-
main” is used as a synonym for the domain of a function,
i.e. the set of values for which a function is defined. Some
domains will be used frequently and are thus assigned a
meaningful name as well as consistent labels to help the
reader connect a symbol used in an equation to the respec-
tive domain. The notation of Inselberg [Ins09] is adopted to
distinguish between Cartesian and parallel coordinates with
respect to the following domains (see also Figure 2):

• The spatio-temporal domain represents the set of four-
dimensional real values R4 describing events in space
and time as well as any projection thereof to lower-
dimensional subspaces (such as time only). Events are
represented by data points referred to as spatial, tempo-
ral, or spatio-temporal data. A point P = (rx,ry,rz, t) ∈
R4 is denoted using xyz-coordinates plus t for the time-
dimension. Lines and curves are denoted with lowercase
letters. The vector p=(rx,ry,rz, t)T is also lowercase with
bold typeface.
• The data domain represents the set of N-dimensional real

values RN , N ∈ N+. Data defined in the data domain usu-

ally depicts non-spatial or abstract data such as observa-
tions drawn from random variables. The position of points
X = (x1,x2, ...,xN) in the data domain is determined using
indexed coordinates, as N may take any natural number
greater than zero. Unless stated otherwise, indexed lower-
case letters denote the respective dimension, such that x1
refers to the first dimension of the data domain. For lines,
curves, and vectors, the same notation as for the spatio-
temporal domain is used.

• The parallel-coordinates domain is represented by the
xy-plane in R2. It is of special interest as its representa-
tion in Cartesian coordinates enables the construction of
parallel coordinates, for which it forms the embedding co-
ordinate system. The representation of a point ` = (x,y)
in the parallel-coordinates domain therefore uses only the
x and y coordinates of the spatio-temporal domain. Note
that lowercase letters with a bar refer to points while cap-
ital letters with a bar denote lines. This notation was pro-
posed by Inselberg [Ins09] in order to emphasize the du-
alities between data domain and parallel-coordinates do-
main.

Note that many datasets in data mining and statistics are
described exclusively by points in the data domain, as they
have no spatial or temporal embedding. Examples are car
statistics, credit card transactions, etc.

2.1. Constructing Parallel Coordinates

Parallel coordinates are constructed by placing axes in par-
allel with respect to the embedding 2D Cartesian coordinate
system in the plane (the parallel-coordinates domain). While
the orientation of axes can be chosen freely, the most com-
mon implementations use horizontal (parallel to the x-axis)
or vertical (parallel to the y-axis) layouts. The choice of lay-
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Figure 3: Constructing parallel coordinates with five dimen-
sions represented by N = 5 vertical lines. Points in the plane
are represented by lines joining the corresponding coordi-
nates at the respective axes. Typically, only the line segments
between the axes are drawn (represented by the bold poly-
line).

out depends on the number of axes, the range of the data,
the dimensions of the screen, and the personal preference.
For reasons of simplicity and consistency, vertical axes will
be used throughout this document unless stated otherwise.
For N-dimensional geometry, this results in N copies of the
y-axis

X i : x = di, i = 1,2, ..,N

where the N-vector dN = (d1,d2, ...,di, ...,dN)
T is used to

denote the axis spacing as the distance of the i-th axis to the
y-axis at x = 0. With this setting, N(N−1)

2 pairs of axes are
obtained which will also be referred to as segments. Note
that for a given dN, there are N− 1 adjacent pairs of axes,
as illustrated in Figure 3. For a discussion of the order to
choose for the axes, please refer to Sections 3.2 and 6.2.

2.2. Projective Plane Model

The point–line duality in the plane [Ins85] is only briefly
summarized here. A more detailed description including an-
alytic proofs and the representation of hyperplanes and p-
flats in RN are given elsewhere [Ins85, ID90, Weg90, Ins09].

For N = 2, let d2 = (0,d) describe a two-dimensional
parallel-coordinates system as in Figure 2. Then, a point
A = (a1,a2)∈R2 of the corresponding data domain is repre-
sented in parallel coordinates by the line joining (0,a1) and
(d,a2)

A : y =
a2−a1

d
x+a1,d 6= 0. (1)

A set of points all located on the line

` : x2 = mx1 +b

is represented by a set of lines in parallel coordinates that
intersect at the indexed point

`12 :
(

d
1−m

,
b

1−m

)
,m 6= 1.

Here, indexes denote axes or dimensions, and `i j is a point in
the X iX j coordinate system. Similarly, points pi with a sin-
gle index are always located on the corresponding axis X i.
For the sake of clarity, indexes will be omitted if the corre-
sponding dimensions are obvious from the context, in partic-
ular for discussions of two-dimensional parallel-coordinate
systems.

Note that the horizontal position of ` only depends on the
axis spacing and the slope of `. For the common case d > 0,
` is located

• left of X1 if m > 1
• right of X2 if 1 > m > 0 and
• between X1 and X2 if 0 > m.

So far, this formulation provides a mapping of points to lines
and vice versa for all lines in the data domain with m 6= 1
and for all lines in the parallel-coordinates domain that are
not vertical, such as the axes. In order to resolve those spe-
cial cases and complete the duality, both the data domain
and the parallel-coordinates domain are considered projec-
tive planes P2 that allow us to map the line ` : x2 = x1 + b
with m = 1 in the data domain to the ideal point `∞ in par-
allel coordinates where the set of parallel lines with slope
b/d intersect. Likewise, the vertical line P∞m : x = d

1−m in
parallel coordinates maps to the set of parallel lines (or the
ideal point) P∞m with slope m in the data domain. Figure 4
illustrates ideal points in both domains.

Based on the point–line duality, other mappings can be
expressed using the envelope of lines in parallel coordinates.
For example, ` is the envelope of all intersecting lines and
is dual to the line ` as shown above. Inselberg further uses

x1

x2

x1

x2

X1 X2

X1 X2

`∞`

P∞m
P∞m

data domain parallel-coordinates domain

Figure 4: The line with slope m = 1 in the data domain is
mapped to the ideal point `∞ in parallel coordinates (top).
The vertical line P∞m : x = d

1−m in parallel coordinates is
represented by the ideal point P∞m with slope m in the data
domain. Both domains are considered projective planes.
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Figure 5: Common patterns in Cartesian coordinates (top) and their dual representation in parallel coordinates (bottom). The
envelope of lines is highlighted for the ellipse–hyperbola duality.

envelopes to establish a curve–curve duality between Carte-
sian and parallel coordinates. Here, a curve c is mapped
point-wise from the data domain to lines in the parallel-
coordinates domain resulting in the line-curve c. The enve-
lope of the line-curve now describes a point-curve in par-
allel coordinates. As an example, ellipses in Cartesian co-
ordinates are mapped to hyperbolas in parallel coordinates,
as can be seen in Figure 5. The ellipse–hyperbola duality
has implications for the visualization of Gaussian distribu-
tions [MW91, FKLI10, HBW11] in parallel coordinates.

Another duality that has implications for brushing (see
Figure 10, page 11) is the rotation–translation duality.
Translating a point in parallel coordinates along the x-axis
changes the slope of its dual line in the data domain, and
vice versa. Similarly, rotating a line in parallel coordinates
about a point results in the dual point to move along the line
dual to the point of rotation. Please refer to Inselberg [Ins09]
for details.

2.3. Interpolation Model

Given N parallel axes, the polyline that is typically used to
represent a point A ∈RN can also be obtained using a piece-
wise linear interpolation of the respective indexed points
ai, i = 1,2, ...,N located on the axes. For example, the line
A in Figure 2 can be computed by linearly interpolating the
points a1 and a2.

In analogy to Section 2.2, let N = 2 and d2 = (0,d)T .
Then, Equation (1) for the representation of a point A =
(a1,a2) in parallel coordinates can also be written as

A : y =
1− x

d
a1 +

x
d

a2,x ∈ [0,d].

The interpolation model allows for a wide range of dif-
ferent visual mappings from points in Cartesian coordinates

to lines and curves in parallel coordinates, as any scheme
that interpolates the indexed points pi at the axes can be
employed (see Section 3.1.3 for an overview on curves).
For example, the interpolation model with linear interpo-
lation can be used to produce the same patterns as in Fig-
ure 5 and it can be shown that a line in Cartesian coordi-
nates is always mapped to a point in parallel coordinates,
regardless of the interpolation model applied [Mou09]. See
Moustafa [Mou11] and references therein for a more de-
tailed discussion of the interpolation model and its proper-
ties.

3. Image Generation

For multivariate data with N > 2, N axes are placed in par-
allel as described in Section 2.1. Applying the point–line
duality to a N-dimensional point for every adjacent pair of
axes results in N− 1 lines (dashed in Figure 3), each repre-
senting a projection of the point to the corresponding plane.
Restricting the mapping to segments results in a polyline in-
tersecting all axes at the respective coordinates (bold in Fig-
ure 3) and constitutes the most common visualization for N-
dimensional points in parallel coordinates. In terms of the vi-
sualization pipeline [HM90], the dashed-line representation
and the polyline-representation constitute different geomet-
ric mappings. Further mapping and rendering techniques for
image generation are presented in this section.

Many parallel-coordinate visualizations are composed of
several layers, each of which may be computed indepen-
dently. While we could consider using one layer for every
line or geometric object, we will distinguish only two main
layers here: one layer for the data points (which are typically
mapped to polylines) and one for the axes. Other frequently
used layers are
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• brushes or any other object used for interaction with the
plot,
• axis overlays such as boxplots or ellipses,
• any other geometry that is mapped to the final image.

A parallel-coordinates system is usually visualized using
the axis layer only. A parallel-coordinates plot is a visual-
ization of the sample layer with optional axis layer. A com-
posite parallel-coordinates plot is a parallel-coordinates plot
with any additional layer as described above.

In the following, different mapping and rendering ap-
proaches for the two main layers are described.

3.1. Samples

This section discusses various visual encodings in the
parallel-coordinates domain for N-dimensional data points
(defined in the data domain). It is important to note that the
geometric mappings presented in the following are the ob-
jects used for visualization in the final parallel-coordinates
plot and do not refer to objects in the N-dimensional data
domain. For a discussion of the representation of multidi-
mensional lines, planes, p-flats, curves, etc. in parallel coor-
dinates, please refer to the respective chapters in Inselberg’s
book [Ins09]. Also note that, with some exceptions, most of
the mappings are constructed using one of the models de-
scribed in Section 2.

The following subsections describe two fundamentally
different approaches for the visualization of a set of data
points. Geometry-based approaches use geometric objects
such as points, lines, curves, or polygons as a mapping for
individual data samples or groups of samples. The analysis
task thereby varies from the visualization of correlation over
the detection of outliers to the characterization of clusters
over multiple dimensions, among others.

Density or density estimates of the input data can be vi-
sualized implicitly or explicitly. Implicit density visualiza-
tions are based on the proximity of geometric objects. De-
pending on the sample size and the shape of the (true, but
typically unknown) distribution, geometry-based visualiza-
tions represent both the raw data and the respective density
or density estimate. Due to the potential overlap of visual
items, however, these approaches may fail to convey useful
information, in particular if the data is very large. In contrast,
density-based approaches explicitly visualize a continuous
density function of the underlying data instead of discrete
samples. Figure 6 illustrates examples of explicit density vi-
sualizations for univariate, bivariate, and multivariate data.

Computing and visualizing densities is a typical sum-
marization task, as it is used to show aggregated infor-
mation about the raw data. In addition, the estimation of
a probability density is closely related to the clustering
task [FPSS96a].

3.1.1. Points

Points in the parallel-coordinates domain may represent
points, lines, planes, hyperplanes, or p-flats with p ∈
N+ of the data domain. In order to distinguish different
point-representations, Inselberg introduces the notation of
indexed points [Ins09]. Points with one index represent
one-dimensional projections of the data domain. An N-
dimensional point P in the data domain is mapped to N in-
dexed points `i : (di, pi) in the parallel-coordinates system.
This can be used to represent marginal distributions on the
axes, similar to a set of N one-dimensional scatterplots (also
referred to as dot plot). Points with two indices `i j repre-
sent lines of the respective xix j-plane in the data domain, as
described by the point–line duality in Section 2.2. For the
generalization of this scheme to p-flats, see Chapter 5 in ref-
erence [Ins09].

The density of points with two indices can be used to de-
tect lines in images [ICD97,DHH11]. Here, the data domain
represents a grayscale image composed of pixels that are
mapped to lines in a parallel-coordinates system with two
axes for the horizontal and vertical pixel coordinates. Then,
the density of intersecting points is evaluated, where high
density regions or clusters are used as an indication of a line
in the corresponding image. To capture lines with positive
slopes, the first axis (e.g. for the horizontal position of pix-
els) is negated and appended to the parallel-coordinates sys-
tem.

To combine the advantages of scatterplots and parallel
coordinates, points have also been used to embed scatter-
plots between adjacent axes [YGX∗09, HW10]. The respec-
tive point coordinates are determined by rotating either one
of the axes by 90 degrees [YGX∗09] or both axes by 45 de-
grees [HW10] to obtain the corresponding Cartesian coordi-
nate system.

3.1.2. Lines

Due to the point–line duality, lines are the most common vi-
sual mapping for parallel coordinates. As described in Sec-
tion 2, N-dimensional points are represented with a polyg-
onal line intersecting each of the N axes at the respective
coordinates (Figure 3 illustrates this scheme).

3.1.3. Curves

Using the interpolation model introduced in Section 2.3, the
polyline resulting from connecting lines at the axes can also
be described as a non-smooth, C0 continuous curve that is
not differentiable at the axes. Several authors proposed using
smooth, Cn continuous curves with n > 0 to

1. visualize multiple, and higher-order correlations [The00,
MW02],

2. facilitate line tracing [MW02, GK03, YGX∗09, HW10,
HLKW12],
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(a) Histogram (b) Contour plot

high
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low
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(c) Density-based parallel coordinates

Figure 6: Density visualizations for univariate (a), bivariate (b), and multivariate (c) data. The histogram shows a density
estimate with discrete bins and an overlayed continuous density estimate reconstructed using a Gaussian kernel. The contour
plot for bivariate data shows isolines for a density estimated from point-data using a 2D Gaussian kernel. Density-based parallel
coordinates are computed from pairs of 2D density fields. A colormap was applied to the density in parallel coordinates.

3. enable the detection of overplotted line seg-
ments [GK03], and

4. visualize clusters using bundling [ZYQ∗08, MM08,
HLKW12].

Piecewise cubic B-splines can be used to visualize multi-
ple pairwise correlations [The00] by choosing two “main
axes” with an arbitrary number of additional axes placed in-
between. Andrews plots [And72] can be obtained using an
interpolation model with Fourier bases [MW02]. Other func-
tions forming an orthonormal basis can be used to emphasize
quantization effects on the axes and to detect second-order
structures [MW02]. Piecewise quadratic and piecewise cubic
interpolation models were proposed [GK03, MM08, HW10]
to enforce tangents at a point pi to be parallel to the line
pi−1 pi+1. This model also resolves ambiguities if curves
intersect axes orthogonally [HW10]. Many interactive im-
plementations further add a parameter [HW10,HLKW12] to
control the amount of smoothing. All these techniques guar-
antee curve smoothness and mitigate the line-tracing prob-
lem (see Section 6.3) by assigning different trajectories to
curves that intersect at an axis.

3.1.4. Bundling

Curves can also be used for edge bundling [Hol06] to vi-
sualize clusters in parallel coordinates [ZYQ∗08, MM08,
HLKW12]. Here, a bundle represents all data samples be-
longing to a cluster defined a-priori [MM08] or emerging
from the bundling algorithm [ZYQ∗08]. Bundles can be
visualized implicitly as a set of curves [MM08, ZYQ∗08,
HLKW12] or explicitly using polygons [MM08]. In both
cases, the visual signature of a bundle is constructed by
“attracting” one [MM08] or more [ZYQ∗08] control points
from individual curves toward a point that represents the
respective cluster, such as the cluster centroid [MM08,
HLKW12].

3.1.5. Polygons

Another mapping that readily supports the summarization
task is from sets of points in the data domain to envelopes
and quadrilaterals in the parallel-coordinates domain. This is
also an example of the explicit visualization of sets or clus-
ters, where the visual mapping for a group of data points is
chosen prior to the rendering step and usually involves one
or more filtering steps from the raw data (such as cluster-
ing the data). Given a set of data samples in the data domain
contained in an N-dimensional convex hypersurface, Insel-
berg [Ins85] suggests drawing the envelope of the respective
polygonal lines in parallel coordinates. Then, any point in-
terior to the hypersurface in the data domain is represented
by a polyline that is also interior to the envelope in parallel
coordinates. Fua et al. [FWR99b] render convex quadrilat-
erals resembling the axis-aligned bounding box of a clus-
ter in the data domain. The same geometric mapping can be
used with different shadings for classification rules [HC00],
fuzzy points [BH03], sets and subsets [AA04], contingency
tables [BKH05, KBH06], binned data [NH06], multivari-
ate time-series [JLC07], and quartiles [Mou11]. Non-convex
quadrilaterals can also be used to indicate negative correla-
tions [JLC07,ZMM12]. Other mappings, in shape similar to
envelopes, evolved from bundling [MM08] and the visual-
ization of line densities (see next section).

3.1.6. Density

In many cases, the density function

σ : RN −→ R

describing the distribution of a (possibly multivariate) data
sample cannot be reconstructed, but has to be estimated from
data. A well-known probability density estimate for a uni-
variate dataset X = (x1,x2, ...,xn) is the histogram (the term
“histogram” is used both for a function representing a den-
sity estimate as well as for the visualization using rectangu-
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lar “bins” (Figure 6), as proposed by Pearson [Pea95]) that
Scott and Sain [SS05] define as

σ(x) =
vk
nh

,x ∈ Bk, (2)

where h is the (uniform) bin width for all bins Bk,k ∈ N
and vk is the number of observations falling in bin Bk. The
histogram illustrated in Figure 6 (left) was computed using
Equation (2). For the bivariate case, σ is defined on a two-
dimensional domain σ : R2 −→ R and the bins Bk represent
areas (usually rectangular) instead of intervals. The process
of constructing such a 2D histogram is sometimes also re-
ferred to as binning. For visualization in the data domain,
binned data is usually mapped to color. Hence, the model of
a histogram is based on counting the number of samples per
line segment in 1D or per area in 2D. The density as com-
puted in Equation 2 can be thought of as the probability of
observing a data point in Bk, and the total probability of ob-
serving a point in any bin equals one. A more general density
estimate for multivariate data and arbitrary kernels reads:

σ(x) = 1
nhN

n

∑
i=1

K
(x−xi

h

)
(3)

where K is the respective kernel with bandwidth parameter
h. Figure 6 illustrates the histogram with discrete bins and a
continuous density estimate using Equation (3) with Gaus-
sian kernels.

Similar to the implicit point-density model for Cartesian
coordinates, a line density is implicitly encoded in parallel
coordinates by the proximity of lines. A common approach
to compute the density

ϕ : R2 −→ R,(x,y) 7→ ϕ(x,y)

explicitly in parallel coordinates at any given point `= (x,y)
is to employ the same binning strategy [Nov04, JLJC05,
HW10, DK10] as for the point-wise density computations
in scatterplots. Here, the number of lines intersecting a 2D
bin is evaluated instead of the points contained in the bin.
Note that rectangular bins should not be confused with pix-
els [Smi95].

Binned densities can also be transformed to parallel co-
ordinates using a scattering approach: quadrilaterals are ren-
dered instead of lines, each representing a rectangular bin
mapped from the data domain [AdOL04, NH06]. Here, the
shading of quadrilaterals either reflects the density of the re-
spective 2D bin (constant shading) or can be interpolated be-
tween one-dimensional density estimates corresponding to
the respective axes [RTT03]. The final density at a point in
parallel coordinates is then computed as the sum over the
sample-contributions. This is typically implemented using
additive blending.

Alpha-blending is used by many authors (assuming alpha-
blending whenever the term opacity is used and the exact
blending mode is not mentioned). Here, the contribution of
the density of a line to ϕ at a point in parallel coordinates

decreases exponentially with increasing number of contribu-
tions and thus does not converge to the line-density model.
The advantage of this technique is that normalization is not
required, as σ is bounded and converges asymptotically to a
maximum value (typically 1 or 256). It is further important
to note that alpha-blending is non-associative, i.e. the value
of ϕ depends on the order of lines being rendered, for non-
uniform distributions of α.

As Miller and Wegman point out [MW91], however, 2D
binning in the parallel-coordinates domain might result in
lines being counted in multiple bins, which violates the re-
quirements of a probability density function to integrate
to one. Instead, the probability of observing a line should
be equal for any horizontal position, such that line den-
sity should be based on counting lines on vertical intervals
instead of two-dimensional areas. A closed-form solution
for bivariate normal and uniform distributions was given by
Miller and Wegman [MW91]. Figure 7 compares the tradi-
tional, constant-density, line-based rendering with binning
in the data domain and the approach proposed by Miller and
Wegman. A density plot of the cars dataset obtained with
Gaussian kernels in the data domain and the transformation
to line density is illustrated in Figure 6. In addition, a col-
ormap has been applied to the density field.

The model of continuous scatterplots [BW08] for the
mass-conserving transformation of density from the spatio-
temporal domain to the data domain was also extended to
parallel coordinates [HW09]. A closed-form solution for the
computation of continuous parallel coordinates from any
two-dimensional density field and a discussion of different
numerical and analytic integration approaches was presented
by Heinrich and Weiskopf [HW09]. Figure 8 compares a dis-
crete density-based parallel-coordinates plot with continu-

Figure 7: A sample of 100000 observations drawn from a
bivariate normal distribution (top, left) rendered using tradi-
tional parallel coordinates (bottom, left), binned parallel co-
ordinates (bottom, center), and the line-density model pro-
posed by Miller and Wegman [MW91] (bottom, right). The
dual pattern for each approach in Cartesian coordinates is
shown in the top row.
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(a) Discrete density-based parallel coordinates (b) Continuous parallel coordinates

high density

low density

Figure 8: Discrete parallel coordinates computed using the binning approach as described in Section 3.1.6 and continuous
parallel coordinates for the “hurricane Isabel” dataset at a spatial resolution of 25× 25× 5. The Gaussian distribution at low
velocities is apparent in continuous parallel coordinates but can not be seen in the discrete version. The high-density region at
low pressure and low velocity constitutes the eye of the hurricane.

ous parallel coordinates for the same dataset. Splatting and
progressive refinement [HBW11] can be applied to speed
up computation time and allow for arbitrary interpolation
schemes.

Using independent bivariate density estimates in the data
domain for each pair of axes produces footprints with a po-
tentially different density for every segment in parallel co-
ordinates. As a result, the rendered primitives might not be
visually traced over all axes, losing visual coherence. To ac-
commodate for this, Moustafa [Mou09] quantizes densities
in the parallel-coordinates domain between adjacent axes
and accumulates the binned frequencies for each data point.
After normalization, polylines are rendered in order of as-
cending cumulated frequencies, i.e. the data point with the
highest overall frequency (over all 2D-projections) is drawn
last. Distance-based weighting schemes [ZCQ∗09, HW10]
were also used to construct a multidimensional density func-
tion which is then used to assign a density to polylines.
Anisotropic diffusion of noise textures [MHDG11] were
also proposed to visualize line orientations for density-based
parallel coordinates computed from discrete samples.

Similar to curve-based parallel coordinates, density can
also be used to resolve ambiguities, as illustrated in Figure 9.

3.2. Axes

Axes are an important part of a parallel-coordinates plot that
fulfill many purposes: they implicitly visualize the axis spac-
ing dN, help an observer read off the value of a sample, and
serve as a visual anchor for labels, ticks, and other overlays.
Axes are usually mapped to straight lines and rendered solid
and fully opaque. Labels are typically attached either at the
top or at the bottom of an axis and can be rotated in order
to save space. As with axes in other coordinate systems, ar-

rows can be used to indicate the direction of increasing val-
ues. Axes are often enriched, or composited, with additional
information about the respective dimension. Common ex-
amples of such overlays are histograms [HLD02, GPL∗11,
WGJL12] or boxplots [Sii00, The03]. Other mappings for
axes are curves [QCX∗07, WGJL12] for the representation
of polar coordinates and tag clouds [CVW09] for the visual-
ization of word-frequencies.

density

high

low

Figure 9: Some ambiguities cannot be resolved entirely us-
ing curves (as in Figure 13), as tangents only depend on ad-
jacent axes. The lines appear as one in the leftmost segment
using curves (top). The density representation (bottom) re-
veals two different densities, where the horizontal line ap-
pears darker than the other two. Assuming equal and con-
stant densities for each sample, this means that at least two
samples are contributing to the density of the horizontal line.
In conclusion, the plot must be showing at least four samples
instead of three as the top plot suggests.
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3.3. 3D Plots

Several approaches to rendering axes [JCJ05, LJC09]
and samples [WLG97, FCI05, RWK∗06, DWA10, Mou11,
WGJL12] in 3D are known for parallel coordinates. The
placement of axes on a plane in a 3D world allows one
to visualize multiple 2D parallel-coordinates plots without
duplicating axes. For the visualization of sets of parallel-
coordinates plots, such as for timepoints of dynamical sys-
tems [WLG97] or the expression of genes at different spa-
tial positions [RWK∗06], stacking the single plots along
the third axis [WLG97, RWK∗06, DWA10] or rotating the
parallel-coordinates domain around a shifted x-axis [FCI05]
was proposed. While 3D representations allow more flexi-
bility by adding one degree of freedom to the visualization,
they also introduce occlusion and distortion by projection.

4. Image Analysis

This section presents work related to parallel coordinates
in an image analysis context. Here, image analysis refers
to any process that uses parallel coordinates or a parallel-
coordinates plot as input. Examples are the visual perception
of a parallel-coordinates plot by a human observer, e.g. in
a data-analysis task, or the processing by a computer algo-
rithm, e.g. for automatic feature detection.

Some formal evaluations compare traditional par-
allel coordinates with other visualizations, namely
scatterplots [LMvW10, HW10, KZZM12] and stardi-
nates [LMP05]. It was shown that humans perform better
using scatterplots than parallel coordinates in visual correla-
tion analysis [LMvW10] and cluster identification [HW10]
tasks. The former study investigated the participants’
ability to estimate the Pearson correlation of two random
variables in scatterplots and parallel coordinates, while
the task in the latter study was to estimate the number
of clusters in a dataset. The same task was shown to be
effective using bundled parallel coordinates [HLKW12].
The performance of estimating the coordinate value of a
given N-dimensional point at a given dimension was found
to be better using parallel coordinates than scatterplots for
small datasets [KZZM12]. The perception of patterns in
the presence of different levels of noise was investigated
by Johansson et al. [JFLC08]. They found out that patterns
in parallel coordinates can be identified with a probability
of 70.7% if approximately 13% noise was added to the
signal. The patterns were created using a sample of 300
points from five different signals, including linear and
sinusoidal functions. Other studies showed that parallel
coordinates are effective in querying databases [SR06]
and alarm filtering [AR11]. Finally, there is evidence that
understanding patterns in parallel coordinates can be learned
quickly [SLHR09].

Parallel coordinates have also been used for the auto-
matic detection of lines [ICD97, DHH11] and other fea-

tures [LT11] of the data domain as well as for the computa-
tion of metrics for visual abstraction [JC08] and for the rank-
ing of 2D plots [DK10] (see also Section 3.2). Line detection
in images can be realized using the density-based mapping
approaches presented in Section 3.1.6. Rendering a line for
every pixel of a grayscale input image with the respective
density results in a parallel-coordinates plot similar to the
example in Figure 7. The density at a point in parallel coor-
dinates now reflects the density of the dual line of the image.
Note that, in order to detect lines with positive slopes (with
points in the parallel-coordinates domain located to the left
or right of the axes), one of the spatial axes has to be inverted
and added to the plot [DHH11].

5. Interaction

Interaction plays an important role to enhance perception
for dataset exploration and visual data mining [FdOL03].
It enables the user of a software to change parameters in-
teractively and get immediate feedback from the system.
In the KDD process, interaction allows the user to modify
each step of the pipeline individually, from the acquisition
of a new dataset over changing normalization parameters to
defining new visualizations. According to the information-
seeking mantra [Shn96], the user of a data-analysis system
should gain an overview first, with the option to get details
on demand. The previous sections illustrate how static im-
ages of parallel-coordinates plots are used for tasks such as
summarization, dependency modeling, or cluster detection.
Interactive parallel coordinates further support these tasks
and enable the exploration of a dataset.

There are many interactions possible with parallel coor-
dinates, as any free parameter of any technique presented
in the previous sections could be changed interactively. For
this reason, only interactions compatible with the traditional
parallel-coordinates plot are considered here, based on the
geometric framework of Section 2. While others classified
interactions with parallel coordinates by task [AA01,SR06],
the same taxonomy as in Section 3 is used here to distinguish
between interactions with samples and axes.

5.1. Interacting with Samples

5.1.1. Brushing

A common interaction technique used in statistical graph-
ics is the brushing of samples, which was introduced for the
masking and isolation of data points in scatterplots [FFT75].
Brushing is an operation that allows the user to select a sub-
set of samples by means of a brush [BC87], which origi-
nally referred to an axis-aligned rectangle for selections in
scatterplots. The selected set of points is then used as input
for subsequent operations, such as highlighting, labeling, re-
placing, deleting, and many more [BC87, BCW87]. A par-
ticularly important task supported by highlighting brushed
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parallel coordinates cartesian coordinates

OR - brush

AND - brush

angular brush

Figure 10: Brushing in parallel coordinates. Top: Axis-
aligned brushing. A brush on one axis (e.g. left axis,
bounded by the blue points) corresponds to a one-
dimensional interval brush in the data domain (bounded by
the dual lines). The union (OR) with another interval (green)
results in the orange brush. The intersection (AND) of two
intervals is shown in the center. Translating the blue and
green points in parallel coordinates results in a rotation of
the dual region in Cartesian coordinates. The bottom row il-
lustrates the dual of an angular brush to the data domain,
which corresponds to a set of ideal points `∞ as in Figure 4.

samples is the visual linking of data samples between mul-
tiple graphical representations (brushing and linking), as in
the scatterplot-matrix [Har75, BC87]. Brushing can further
be direct and indirect [MW95], be composed of logical oper-
ations [MW95] or graphs [Che03], and be applied to dimen-
sions instead of samples [TFH11]. As most of those concepts
are applicable to parallel coordinates as well, the discussion
will be restricted to the geometry of brushes and methods
specifically designed for parallel coordinates.

An axis in the parallel-coordinates domain represents a
set of parallel lines (or the ideal point) in the data do-
main [Ins09]. Brushing a point on an axis is thus equiva-
lent to the selection of a line (i.e. all points on a line for
discrete data) in the data domain. In addition, these lines
are perpendicular to the respective axis in the data domain,
such that the brush depends only on one dimension. Ac-
cordingly, a range on an axis in parallel coordinates results
in an interval on the respective dimension in the data do-
main (such as the blue and green intervals on the axes in
the topmost illustration in Figure 10). Extending such a one-
dimensional brush to multiple axes enables the construction
of higher-dimensional brushes [MW95] using logical opera-
tors [War94,AA99,HLD02] or graphs [Che03]. For instance,

the AND-operation can be used to subsequently build a con-
vex polygon in parallel coordinates which is dual to a hyper-
cube in the data domain.

Exploiting the rotation–translation duality, line-based and
polygon-based brushes can also be employed in the space
between axes. As indicated in Figure 10, translating the blue
and green points in parallel coordinates results in a rotation
of the corresponding area in Cartesian coordinates.

Another brush that can be used to select samples in paral-
lel coordinates is based on the slope of lines between adja-
cent axes. With angular brushing [AA99,HLD02], a range of
angles in parallel coordinates (e.g. relative to the horizontal)
can be used to define a set of ideal points `∞ as a brush. In
contrast to axis-aligned brushing, angular brushing enables
a line-based brush in the data domain and thus further allows
for the selection of lines with positive slopes in the data do-
main without the need to flip axes (see also Section 5.2).

For large datasets, hierarchical brushes us-
ing wavelets [WB96] and hierarchical cluster-
ing [FWR99b, FWR99a, FWR00] have been proposed.
Here, brushed samples are aggregated in a balanced [WB96]
or unbalanced [FWR99b] tree that can be navigated in
discrete steps by defining the current depth [WB96] or
continuously with arbitrary cuts [FWR00]. Both techniques
give the user control over the current level-of-detail (LOD).

Traditional brushing can be expressed as binary function
assigning either 0 or 1 to every sample in the dataset. Smooth
brushing [MW95, HLD02, FKLI10] uses a continuous func-
tions instead and allows one to express a certain degree-of-
interest to any point (line) in the data (in parallel coordi-
nates). However, composites are more difficult to compute
using smooth brushes [MW95, HLD02].

Brushing in parallel coordinates can be supported by hap-
tic feedback, e.g. by projecting a parallel-coordinates system
on a mixing-board interface [CBS∗07]. Bimanual interaction
was found to be helpful for exploration and can also be used
for angular brushing with touch interfaces.

5.2. Interacting with Axes

The position of axes in a parallel-coordinates plot has a high
impact on the patterns emerging from the visualization of
samples, as they define the scheme for locating an individual
sample in the parallel-coordinates system. Translating axes
changes the order of variables and the spacing in-between.
The scaling determines the range of values that intersect an
axis and provides a mechanism for flipping axes. Both oper-
ations, translation and scaling, cover a wide range of inter-
actions that have been proposed for parallel coordinates.

5.2.1. Translation

The absolute horizontal position of axes dN in parallel coor-
dinates is a free parameter of the visualization and does not

c© The Eurographics Association 2013.



J. Heinrich & D. Weiskopf / State of the Art of Parallel Coordinates

affect the validity of the point–line duality. The relative dis-
tance between adjacent axes is usually chosen to be uniform,
as this configuration puts equal emphasize on all pairwise
variable relations. However, in some cases it is beneficial to
move axes horizontally, e.g. to investigate a particular pat-
tern in detail (by exploiting the additional space gained for
one pair of axes if another axis is translated horizontally),
or to manually rearrange the axis order. Axis translation is
often implemented as a drag-and-drop operation, where a
uniform axis spacing is reconstructed after releasing an axis.

Translating axes and associated sample coordinates in the
vertical direction can be useful to align a set of axes to a
common scale or a common value [AA01].

5.2.2. Scaling

As with most statistical plots, patterns emerging in parallel
coordinates depend on the scale of variables and axes. The
default range of values represented on an axis is bounded
by the minimum and maximum values of the correspond-
ing variable, i.e. the smallest value will always intersect the
axis at the bottom and the largest value at the top. While this
setting allows us to see patterns in data of different units, it
is not suited to compare values of equal units if the range
of measurements differ between axes. Here, a uniform scale
on all axes might be a better solution. Axis scaling is equiv-
alent to applying a function to all values of the respective
variable and has also been referred to as dimension zoom-
ing [FWR99b]. Scaling can be used to align axes to a a com-
mon base [AA01], such that one sample is represented as a
horizontal line. This allows the user to visually estimate the
similarity of other samples with respect to a reference.

A special case of scaling is the flipping of axes. Flipping
negates all values of the respective dimension, which has the
effect of reversing the relation of positive values at the top
and negative values at the bottom. As a result, the slopes of
lines are also negated as well as the patterns for negative and
positive relations. Hence, a set of parallel lines indicating a
positive correlation is transformed to a negative correlation,
which can be represented as a point in parallel coordinates.
This is particularly useful for systems searching for points in
a parallel-coordinates plot, e.g. for the automatic detection
of lines in the data domain [ICD97, DHH11]. Here, a two-
dimensional data domain is represent using three axes, say
X1,X2, and X ′1 in parallel coordinates, where X ′1 denotes the
flipped X1. Now, the intersection of two lines will always
occur within one of the segments.

6. Challenges

As we have seen in the previous sections, many decisions
have to be made in order to find the “right” way to visual-
ize (Section 3), interact (Section 5), or analyze (Section 4)
parallel-coordinates plots. Similarly, the research conducted

in the area of parallel coordinates may be categorized by vi-
sualization or interaction techniques, analysis tasks, applica-
tions, or challenges. While the challenge is clearly defined
by a particular question or data analysis task (e.g. “find out-
liers in the data”), many authors motivate their work implic-
itly or explicitly by addressing some sort of “drawback” of
a particular visualization. A good example of such a defi-
ciency is “the clutter” in parallel coordinates, and the corre-
sponding challenge is to reduce it. While there are objective
measures for clutter [ED06], a subjective quantification of
clutter in practice usually depends on the context and indi-
vidual experience of the observer with the respective visu-
alization. In many cases, no particular analytical task is ad-
dressed explicitly by reducing the clutter, although diverse
findings such as clusters, outliers, or other patterns can be
revealed by doing so. As a consequence, many researchers
were faced with the following challenges when visualizing
data with parallel coordinates:

• Overplotting occurs in parallel coordinates if lines poten-
tially occlude patterns in the data.

• The order of axes implicitly defines which patterns
emerge between adjacent axes.

• The line-tracing problem occurs if two or more lines in-
tersect an axis at the same position.

• Nominal and ordinal data such as sets and clusters have
to be mapped to a metric scale before it can be visualized
in parallel coordinates.

• Time series are special in that time points, if interpreted
as dimensions, have a fixed order.

• Uncertain data is another challenge for visualization, and
there are approaches for the visualization of uncertainty
in parallel coordinates.

6.1. Overplotting

The most prominent challenge in parallel coordinates is the
clutter produced by a large number of lines, which poten-
tially hide the patterns contained in the data. Lines need
more ink than points such that the total mass of data appears
larger in parallel coordinates than in scatterplots.

While many authors use the term “clutter” as a synonym
for “density” [ED06, ED07], it is important to note that
a dense display can reveal important information as well,
even without any modification to the traditional parallel-
coordinates plot [Ins09]. Here, we loosely define “clutter”
as a parallel-coordinates plot that does not reveal any pattern
useful to the observer.

The clutter reduction techniques for parallel coordinates
can be categorized into data-driven and screen-based ap-
proaches. The former refers to algorithms that operate on
the data before mapping- and rendering in terms of the visu-
alization pipeline and do not affect the visualization. The lat-
ter are methods that modify parameters of those two stages.
Hence, clustering the data and visualizing only the cluster
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Figure 11: A frequently used synthetic dataset for parallel-coordinates plots about the geometric features of pollen grains.
The large number of lines (3848 observations, left) may hinder the perception of patterns in the data. Note, however, that the
hyperbolic shape of the envelope hints at normally distributed data. Density-based approaches (right) may reveal patterns that
are not visible otherwise. The cluster of samples that appears in the center forms the word “EUREKA” if viewed in a scatterplot.

centroids in traditional parallel coordinates is an example of
a data-driven clutter-reduction approach, while zooming into
the image is a screen-based approach that might have differ-
ent effects for different visualizations.

Some approaches to clutter reduction in parallel coordi-
nates are discussed using a slight modification of an estab-
lished taxonomy [ED07]. The methods are grouped in filter-
ing, aggregation, and spatial distortion techniques.

Filtering is an operation that removes signals from its in-
put. A filter reduces the number of lines to be rendered. In
this sense, dynamic querying [Shn94] is a filter, if imple-
mented with brushing (Section 5.1.1), which reduces clutter
by putting the filtered lines in focus using some highlighting
mechanism. Combining simple brushes using logical oper-
ators [MW95, AA99] further allows the user to formulate
rather complex queries that might even achieve faster and
more accurate results using parallel coordinates than using a
Structured Query Language (SQL) [SR06]. Another type of
filter uses sampling at lower rates than for the input data and
has been suggested to reduce the actual number of lines to be
rendered [ED06] depending on the density (Section 3.1.6).
This approach assumes that subsets of the data may repre-
sent the dominant features if sampled appropriately. Clearly,
it depends on the sampling strategy and the density estima-
tion technique [ED06].

Aggregation refers to the computation of sum or integral
of a subset of data and can be performed in the data domain
and in the parallel-coordinates domain. There are many dif-
ferent ways to aggregate data and to render the resulting ag-
gregate items [EF10]. To reduce clutter aggregates are ren-
dered instead of individual samples. Typical aggregate items
computed in the data domain are the mean [Sii00,HLKW12,
HHD∗12], median [RZH12], or cluster centroid [FWR99b]
of a subset of samples. The range of visual mappings for
aggregate items covers those discussed in Section 3. Tradi-
tional polylines [Sii00] and curves [MM08, HLKW12] can
be used either alone [Sii00] or as an overlay [HHD∗12] if no

information about the distribution of the subset is available.
Polygons [FWR99b,AA04,RZH12], histograms, or boxplots
on the axes provide means to visualize the extent and dis-
tribution of subsets. Clusters can also be visualized using
bundles. Hierarchical data structures [FWR99b,RZH12] can
further be exploited to render lines or aggregate items at dif-
ferent levels of detail or to progressively refine the final vi-
sualization. The computation of a density (Section 3.1.6) is
often referred to as a clutter-reduction technique as it is par-
ticularly useful to reveal dense areas and clusters in the data
(Figure 11).

Spatial distortion techniques apply a transformation to
the viewport. The most common representatives are fisheye
views and the traditional, linear zoom. Distortion can help
resolve uncertainty about line crossings, clarify dense areas,
and brush individual lines with a pointing device. In addi-
tion, horizontal distortion (changing the axis-spacing vector)
affects angles and slopes of lines, which can have an impact
on the accuracy of judging angles [CM84, CM87, GW12].

In parallel coordinates, axis scaling (Section 5.2.2) can
achieve the same effect as spatial distortion by rescaling the
data at adjacent axes using the same function. However, axis
scaling is performed in the data domain and further allows
one to use different scales for each axis. Axis scaling thus be-
longs to the class of line-displacement techniques for clutter
reduction.

Dimensional reordering in parallel coordinates is the
same as axis translation (Section 5.2.1). Reordering the axes
in a parallel-coordinates plot may reduce clutter by reveal-
ing patterns (e.g. of correlation) that might have been hidden
before. An overview of axis-reordering techniques is given
in Sections 5.2.1 and 3.2.

6.2. Axis Order

Since parallel coordinates were introduced [Mau85], axes
are placed in parallel with different preferences for a hori-
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Figure 12: Different axis orders exhibit different patterns
of correlation. The 8-dimensional census dataset [BCW88]
shows several statistics of the 50 states of the United States
of America and is layed out in the Parallel Coordinates Ma-
trix (PCM) [HSW12] such that every pair of axes appears
exactly once. The topmost plot shows a negative correlation
between “Illiteracy” and “Frost”, while the bottom plot indi-
cates that “Life Exp” is negatively correlated with “Murder”.
Taking a close look at the “HS Grad” axes, we find that there
is a cluster of states having a low rate of high-school grad-
uates. Also, the bottom row indicates a negative correlation
between “Illiteracy” and “HS Grad”. A moderately negative
correlation seems to be between “Life Exp” and “Illiteracy”
in the third row, as well as a positive correlation with “In-
come”.

zontal [Ins85] or vertical [Weg90] layout. Independent of the
orientation, the order of axes affects the patterns revealed by
a parallel-coordinates plot [Weg90] (see Figure 12). As there
are N! possible orderings for N axes, many researchers ad-
dressed the axis order problem in their work. While most of
the papers deal with using some measure to score an order-
ing of axes, others build on that and discuss how to visualize
multiple orderings in a single display.

Considering two-dimensional relations, where the or-
der of N axes defines the pairwise plots of the full
parallel-coordinates plot independently of the orientation,
it is useful to model these relations in a graph-theoretic
framework [Weg90, QCX∗07, HO10, ZMM12] where ver-
tices V = {xi|i = 1, ...,N} represent axes and edges E ={
{xi,x j}|i, j = 1, ...,N

}
represent pairwise plots of axes.

Now, the complete graph KN models the set of all pairwise
relations between N dimensions and |E|= N(N−1)

2 . Note that
a parallel-coordinates plot can be constructed by following
a path in KN and laying out axes in parallel according to
the order of nodes in the path. In particular, the traditional
parallel-coordinates plot corresponds to a Hamiltonian path
in KN , i.e. a path that visits every node exactly once. See
Hurley and Oldford [HO10] for an excellent treatment of

graph-theoretic approaches to the pairwise display of vari-
ables.

There are different ways to visualize all pairwise relations
in parallel coordinates using the previously described graph
model. In general, it suffices to find an Eulerian trail [HO10]
visiting all edges in KN and laying out the axes in parallel
coordinates accordingly. For N = 2m + 1,m ∈ N, no such
trail exists, and some redundancy has to be tolerated by vis-
iting some edges twice. For some applications, it is neces-
sary to add another constraint to the problem of visualiz-
ing all pairwise relations by requiring subpaths to be Hamil-
tonian and of length N. In other words, all pairwise rela-
tions should be visualized in sets of N-dimensional parallel-
coordinates plots, where every plot contains all N axes of
the input dataset. Such a Hamiltonian decomposition of the
complete graph KN into m Hamiltonian paths for N = 2m
and m Hamiltonian cycles for N = 2m+1 can be used to vi-
sualize all pairwise relations in a single parallel-coordinates
plot [HO10] (with some edges visited twice for N = 2m) or
in a matrix-layout [HSW12] as in Figure 12 (with some ver-
tices visited twice for N = 2m+ 1). Other matrix-based vi-
sualizations of multiple parallel-coordinates plots use latin-
squares [VMCJ10], ranked displays [TAE∗09,AEL∗09] and
manual orderings [CvW11].

With increasing N, all approaches to enumerate and vi-
sualize multiple paths will become impractical at some
point, either due to the computational complexity or the
limited screen real-estate. Then, a choice has to be made
to decide which axis order to prefer. This problem can
be translated to the graph-model by weighing edges with
a distance measure d : (xi,x j) −→ R and order paths by
their total edge weight. The metrics for ordering axes in
parallel coordinates can be grouped into data-space mea-
sures [ABK98, YPWR03, Guo03, ZLTS03, PWR04, Hur04,
WAG06,JKL∗09,HO10,FR11,ZK12] defined in the data do-
main and image-space measures [TAE∗09, AEL∗09, DK10,
TAE∗11] defined in the parallel-coordinates domain. Data-
space metrics are well-known from statistics and data min-
ing and include the Euclidean distance, Pearson correla-
tion, Kendall’s τ, etc. In contrast, image-based metrics mea-
sure the slope of lines, their overlap (density), the num-
ber of line crossings and -angles, convergence, etc. Screen-
based metrics [NH06, DK10] operate on the rasterized im-
age of a parallel-coordinates plot and further incorporate
the current screen-resolution when computing a measure.
The most common tasks being supported by both types of
measures are correlation analysis [Hur04, JKL∗09, HO10,
FR11, ZK12], clustering of data points [Guo03, TAE∗09,
AEL∗09, JKL∗09, TAE∗11, FR11, ZK12], clustering of di-
mensions [ABK98, Hur04], clutter reduction [PWR04], di-
mensionality reduction [YPWR03, JKL∗09], and outlier de-
tection [WAG06, JKL∗09]. Note that all measures can be
applied before or after rasterization in the respective do-
main, which allows one to include the current resolution
into the computation of a metric. As even finding the sin-
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gle Hamiltonian path/cycle with the smallest edge weight is
NP-hard [HO10], heuristics [ABK98,Hur04,HO10] or man-
ual path-selection [QCX∗07, ZMM12] can be used instead.

Other approaches were proposed to order axes ac-
cording to higher-order measures [The00, JKL∗09, FR11],
clustering [IA99, YPWR03], or 3D-parallel-coordinates
plots [LJC09]. Without changing the order of axes, a grand
tour can be used with parallel coordinates to traverse differ-
ent projections of the data.

6.3. Line Tracing

The line-tracing problem in parallel coordinates is a special
case of the linking problem in statistical graphics [CM84].
Given two data points a = (a1,a2,a3)

T ∈ R3 and b =
(b1,b2,b3)

T ∈ R3 and two 2D plots relating x1 with x2
and x2 with x3. Linking a with b is the task to relate the
lower-dimensional projections with each other by some vi-
sual means. For a single polygonal line, parallel coordinates
inherently solve the linking problem. However, if a and b
coincide on one dimension, e.g. a2 = b2, it is impossible to
visually link the points. This is demonstrated in Figure 13,
where it is not possible to assign all line segments unambigu-
ously to a data point. There are basically two approaches to
mitigate the linking problem for parallel coordinates. Using
different colors to distinguish different points is a popular so-
lution. However, this approach does not scale well with the
number of points as it is difficult for the human visual sys-
tem to reliably distinguish more than twelve colors [War04].
The other technique is to use curves instead of lines (see Sec-
tion 3.1.3 for a review of the different implementations using
curves). In contrast to lines, curves provide at least C1 con-
tinuity and thus support the Gestalt principle of continuity.
The disadvantage of using curves is the distortion of values
between axes, such that some of the geometric properties
as presented in Section 2 are not valid. However, other sta-
tistical properties of curve-based parallel coordinates were
shown to be useful for pattern recognition [Mou11].

6.4. Sets and Clusters

The previous section presented clustering as a clutter-
reduction technique. The focus of this section is the visual-
ization of pre-clustered data with parallel coordinates. Here,
the motivation for clustering is not to reduce clutter but to
visualize patterns or anomalies within or between sets of
data. For metric data, some of the techniques presented in
the previous section about aggregation are applicable, i.e.
the representation of a cluster by its mean value (or cen-
troid). However, sets are not necessarily metric data and
are often used to categorize a dataset. A simple but effec-
tive method to distinguish a small set of categories are col-
ors. If the color channel can not be used, bundling has been
shown to work well for the identification of clusters while
having a low impact on the effectiveness of the estimation of

lines curves

cross

touch

overlap

Figure 13: Ambiguities for tracing lines can partly be solved
using curves instead of lines. For a pair of lines crossing at
the midway axis (top), the curve model exhibits the same
pattern. If lines touch instead (middle), a different pattern
emerges. Note that without knowing the underlying model,
it is still not possible to visually trace the lines. For lines
that coincide (bottom), a smooth representation succeeds in
disambiguating the samples.

correlations [HLKW12]. Other approaches based on geom-
etry are to map clusters to envelopes [Mou11] or bounding-
boxes [FWR99b].

6.5. Time Series

Time series are frequently visualized using line plots, where
a single line or curve represents the progression or change of
a data point over time. These plots can be constructed with
the linear interpolation model of Section 2.3, simply by la-
beling the dimensions of the data domain as the time points
of a time series. Using this model, time-series plots are a
special case of parallel-coordinates plots, with the restric-
tion to a common scale on every axis and a fixed ordering of
dimensions. This has implications in both directions—from
time-series plot to parallel-coordinates plot and vice versa.
On the one hand, some of the results that were presented for
parallel coordinates might also be valid for the interpretation
of time-series plots. On the other hand, one of the reasons of
the popularity of parallel coordinates might be the familiar
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visual pattern of a line interpolating a set of points that is
long known from time-series plots such as stock market di-
agrams or the temperature forecast. While both types of vi-
sualization are expressed using similar visual mappings, the
underlying model is different, as time points are samples of
a one-dimensional continuous domain, whereas the axes in
parallel coordinates represent one dimension each.

Several authors combined the visualization of time se-
ries and parallel coordinates. A simple but effective tech-
nique is to append data dimensions as axes to a time series
plot [DHNB09], which enables the brushing of data sam-
ples with respect to the additional variables. Interchanging
axes with “profiles” in a time-series plot allows for a truly
multivariate interpretation of time-series data: here, an axis
represents a measurement, dimension, or variable, while a
data point is mapped to a polyline. Inselberg maps time to
an axis in parallel coordinates and visualizes aircraft tra-
jectories with indexed points in parallel coordinates [Ins01].
Although samples from time-series are intrinsically ordered,
the order in which data samples are rendered in parallel co-
ordinates has no effect on the final visualization unless α-
blending or a density model is applied. Temporal parallel
coordinates [JLC07] respect the order of time points and
render a constant-density polygon for two consecutive sam-
ples. This corresponds to a nearest-neighbor interpolation of
values in the data domain. The density approach is scalable
and allows one to put more emphasize on large gradients,
i.e. for which data dimensions the total amount of change is
highest.

Another technique for the visualization of time-series
in parallel coordinates employs animation [BS04, The06].
Here, a single parallel-coordinates plot is computed for ev-
ery time step. A series of frames can then either be animated
automatically or explored by the user stepwise.

6.6. Uncertainty

Uncertainty is a term that is difficult to define, and it is not
the purpose of this section to do so. For the upcoming dis-
cussion, uncertainty may refer to variance, error, precision,
or noise. We will shortly review how uncertainty may be in-
troduced by visualizing data with parallel coordinates, how
it can be addressed, and how a given, quantitative measure
of uncertainty may be visualized along with the primary data
in parallel coordinates.

According to the taxonomy of Dasgupta et al. [DCK12],
uncertainty in parallel-coordinates plot occurs in the process
of encoding the image of a parallel-coordinates plot as well
as in the decoding steps involved when processed by humans
or machines. For humans, additional uncertainty may arise
individually due to different aspects of cognition. For exam-
ple, an experienced user might be less uncertain about the
recognition of patterns in parallel coordinates than a novice.
Encoding and decoding directly relate to what I termed im-

age generation and image analysis, for which we briefly dis-
cuss uncertainty.

The encoding of a parallel-coordinates plot introduces un-
certainty in different stages [DCK12] of the transformation
from the data domain to the parallel-coordinates domain.
Despite from the loss of information due to the projection
of a high-dimensional dataset to a set of 2D spaces, visual
uncertainty may have a variety of sources in parallel co-
ordinates. The user-driven filtering of dimensions and the
application of algorithms in the data-mapping stage intro-
duces uncertainty regarding the completeness (sample size)
and the configuration (axis ordering) of the plot. Note that,
in the KDD pipeline [FPSS96b], data mapping refers to the
transformation step. The rendering of a parallel-coordinates
plot causes further uncertainty as it involves sampling lines
or line-densities on a regular grid (the pixels). This step
depends on the resolution of the screen (the sampling fre-
quency), the sampling kernel (usually a rectangular func-
tion), and the reconstruction kernel (rectangular for opaque
lines). These parameters influence the precision in the visual
mapping of data samples to lines. Visualizing aggregated
information such as clusters instead of individual samples
decreases the granularity and with that increases the uncer-
tainty of the visual representation. Granularity is a common
parameter subject to interaction and is often controlled by
detail-on-demand operations (see also Section 5).

The analysis of an image of parallel coordinates consists
of decoding the information contained in the sampled rep-
resentation of the plot. In order to discuss the theoretical
aspects of uncertainty associated with perception and cog-
nitive processing of a parallel-coordinates plot, however, a
perfect reconstruction of lines has to be assumed. Then, the
human visual system introduces uncertainty when sampling
the image, for the same reasons as above. The traceability
of lines at the intersection with axes is yet another source of
uncertainty that occurs for many visualizations where over-
lap is possible [EF10]. This type of uncertainty can be re-
duced with brushing (Section 5.1.1) and curves (Sections 2.3
and 3.1.3). A related problem is the identification of lines in
heavily cluttered displays with the special case of overlap-
ping lines. While the former can be resolved geometrically
with increasing resolution or by scaling, the latter can be de-
tected using density or transparency (Section 3.1.6).

The representation of uncertainty in parallel coordinates
has been addressed by few researchers. One approach is to
model data points with a normal distribution and to map
these to parallel coordinates with respect to the point–line
duality (see Section 3.1.6). The resulting image resembles a
probability distribution of lines in parallel coordinates, such
that uncertain points are de-emphasized while certain values
appear more salient.
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7. Applications

This section provides references to some of the many appli-
cations of parallel coordinates in the life sciences and en-
gineering domains. Due to the large amount of publications
using parallel coordinates, we can only provide for a short
and non-exhaustive list of selected applications per domain.

7.1. Life Sciences

Parallel coordinates were used in a number of ap-
plications in different fields of the life sciences,
including biology [KERC09, GPL∗11], bioinformat-
ics [DHNB09], systems biology [BMGK08, HHD∗12],
genetics [RWK∗06], functional genomics [MWS∗10],
neurophysiology [TCMR05, tCM07] or computational
chemistry [Bec97]. For gene expression data, parallel
coordinates can be used to visualize the “profile” of genes
(lines) over a set of conditions (axes). This is the natural
counterpart to the heatmap [ESBB98], where rows represent
genes and columns represent conditions. Note that in many
occasions, conditions represent time steps which makes
the corresponding parallel-coordinates plot a time-series
visualization, where the order of axes is fixed. However,
appending statistical dimensions to “profile plots” is a useful
technique for model verification and querying statistical
properties [DHNB09]. Gene profiles can also be visualized
in parallel coordinates to help experts establish functional
relationships of the expression of genes to their spatial loca-
tion [RWK∗06, MMD∗10]. In conjunction with metabolic
networks, parallel coordinates were used for the visualiza-
tion of network parameters for single cells [BMGK08] and
cell populations [HHD∗12].

7.2. Engineering

Data in engineering applications often consists of multi-
attribute samples given in the spatio-temporal domain, that
need to be analyzed with respect to the time and place
they were taken. Hence, linking parallel-coordinates plots
(representing the multi-attribute data) to maps and 3D-
visualizations (representing the spatial domain) was shown
to be useful, e.g. to compare census data of different
countries [AA01], visualize health statistics [Eds03], an-
alyze traffic [GWY∗11] or computational fluid dynam-
ics (CFD) data such as weather simulations [DMH04,
BBP08] or nasal air flow [ZMH∗09]. Continuous paral-
lel coordinates [HW09] were used to detect features in
CFD data [LT11]. Parallel coordinates can also be used
to navigate high-dimensional parameter spaces in volume-
rendering applications [PBM05,TPM05,CBS∗07] and to de-
sign multidimensional transfer functions [GXY11]. The ex-
ploration of high-dimensional parameter spaces is another
frequent application of parallel coordinates, e.g. for aircraft-
and car design [GBS∗99, BPFG11] or diesel injection sys-
tems [MJJ∗05, MHDG11]. Parallel coordinates were fur-
ther applied for process control in chemical plants [AW06,

CWVB11, DEN12], for alarm filtering for industrial sys-
tems [AR11], and for air traffic conrol [Ins01]. Another
security related application of parallel coordinates is the
detection of network attacks [CLK09, KLCM09, TNSa11,
PMSN11].

8. Conclusion and Future Work

Although parallel coordinates were first published as early
as 1885, they have become popular in the visualization com-
munity only recently. In many other domains, parallel co-
ordinates are either unknown or considered an expert tool
that requires much effort to work with. This report illustrates
the variety of research conducted in modeling, creating, un-
derstanding, and interacting with parallel coordinates. Our
taxonomy covers most of the aspects of parallel coordinates
that are not covered in other surveys [Ins09,Mou11] and pro-
vides an abstraction for the classification of research topics.
The taxonomy can be used to identify areas that require fur-
ther research and to find techniques that have been success-
fully applied for a variety of challenges and tasks. However,
we deliberately retained from evaluating the techniques with
respect to their applicability, correctness, usability for real
datasets, and performance compared to other visualization
techniques, as this would be out of the scope of this state-of-
the-art report.

In the future, a quantification of the research conducted
within the individual topics would be desirable to im-
prove the white-spot analysis and find underrepresented
research areas. Also, an evaluation of existing tools and
systems that employ parallel coordinates is required
to identify shortcomings and technical issues with re-
spect to the implementation of the techniques surveyed here.
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