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Abstract

Continuous scatterplots and parallel coordinates are used to visualize multivariate data defined on a continu-

ous domain. With the existing techniques, rendering such plots becomes prohibitively slow, especially for large

scientific datasets. This paper presents a scalable and progressive rendering algorithm for continuous data plots

that allows exploratory analysis of large datasets at interactive framerates. The algorithm employs splatting to

produce a series of plots that are combined using alpha blending to achieve a progressively improving image. For

each individual frame, splats are obtained by transforming Gaussian density kernels from the 3-D domain of the

input dataset to the respective data domain. A closed-form analytic description of the resulting splat footprints is

derived to allow pre-computation of splat textures for efficient GPU rendering. The plotting method is versatile

because it supports arbitrary reconstruction or interpolation schemes for the input data and the splatting tech-

nique is scalable because it chooses splat samples independently from the size of the input dataset. Finally, the

effectiveness of the method is compared to existing techniques regarding rendering performance and quality.

Categories and Subject Descriptors (according to ACM CCS): Probability and Statistics [G.3]: Multivariate
Statistics—, Computer Graphics [I.3.3]: Picture/Image Generation—Display algorithms

1. Introduction

Data plots such as histograms, scatterplots, and parallel co-
ordinates are well-known tools in information visualization
and descriptive statistics. These techniques are commonly
applied in order to analyze trends, correlations, clusters, or
distributions. While the data domain may be continuous, the
plotting process typically relies on discrete samples that are
then rendered using either points or density estimates (such
as kernel density estimation). Hence, a discrete model is in-
volved at one stage of the rendering process. In scientific
visualization, many datasets are defined on a continuous do-
main, often within a spatial embedding and one or more data
dimensions. Given samples of such continuous data on some
type of grid allows continuous reconstruction of in-between
data values if an appropriate reconstruction or interpolation
scheme is applied. Although the spatial visualization of con-
tinuous data with underlying continuous models is a well-
known field in the scientific visualization community, con-
tinuous density models for histograms [CBB06, SSD∗08],
scatterplots [BW08], and parallel coordinates [HW09] for
scientific data have only recently been published.

While these density models are established now, fast and
accurate algorithms for the computation of continuous sta-
tistical plots are rare. To fill this gap, this paper presents a
new approach to progressive rendering of continuous 2-D
scatterplots and multivariate parallel-coordinates plots. To
achieve high frame rates for interactive data exploration, a
forward-mapping technique inspired by splatting for direct
volume rendering is employed to compute the influence of
samples to the final image and successively approximate the
true representation of the plot. To this end, we present a
novel closed-form analytic description of the splatted foot-
print of Gaussian input kernels for scatterplots and parallel
coordinates. We introduce a new progressive refinement al-
gorithm that allows us to obtain initial results extremely fast
and hence complements a very useful property of continuous
data plots: for many datasets, a small subsample of the full
data may provide a good approximation to the final density
distribution, making progressive refinement the ideal algo-
rithm for rendering. The paper is completed by performance
and image-quality analysis of the GPU implementation of
our splatting algorithm.
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2. Related Work

Scatterplots and parallel coordinates are common plotting
techniques for the visualization, exploration, and analysis of
statistical data. A good overview of statistical graphics can
be found in [CHU08]. The use of scatterplots in explorative
data analysis was promoted by Tukey [Tuk77], whereas par-
allel coordinates were developed by Inselberg [Ins85]. Re-
cently, a rigorous mathematical description of parallel coor-
dinates was published in a textbook by Inselberg [Ins09].
We refer to this textbook for background information on
the mathematics of parallel coordinates. For large data vi-
sualization, overdrawing is a severe issue for both types of
plots. A common approach to reduce visual clutter uses fre-
quency plots for points in scatterplots—often accompanied
by smoothing and kernel estimation techniques [BA97]—
and for lines in parallel coordinates [MW91, WL97].

Although statistical data plots were originally introduced
using discrete (point-based) rendering, they have also been
proven to be useful tools for the analysis of scientific data,
which is typically defined on continuous domains within a
spatial embedding. Here, the data is normally given on a
grid, and the data values at the grid points are interpreted
as discrete samples for the construction of the statistical
plots. For example, the SimVis system [DGH03] uses his-
tograms and scatterplots in a coordinate-view setup with
linking and brushing to explore simulation data. In other ex-
amples, 2-D transfer functions are specified with data fre-
quencies visualized in scatterplots [KKH02], and parallel
coordinates are used for multidimensional transfer function
design [PBM05,TPM05,ZK10]. However, none of these ex-
amples considers the continuous domain of the input data
field; instead they rely on discrete samples.

To resolve the inconsistency between continuous
data model and discrete plotting, Bachthaler and
Weiskopf [BW08] introduced a mathematical model
that describes the mapping of densities from a continuous
input field with known interpolation scheme to the contin-
uous data domain. The same idea can be used to compute
continuous parallel coordinates [HW09] by exploiting the
point-line duality of Cartesian and parallel coordinates. As
a consequence, rendering continuous parallel coordinates
always depends on rendering continuous scatterplots, for
which an analytic solution is only known for triangulated
data with linear interpolation. Bachthaler and Weiskopf
further presented an adaptive approach to continuous
scatterplots [BW09] that can be used with arbitrary interpo-
lation schemes but assumes constant density distributions
within single cells. In contrast, splatting densities allows
for flexible density reconstruction kernels, free choice of
sample positions, and any type of interpolation scheme.
Therefore, we achieve better image quality at comparable
rendering speed.

The model of continuous scatterplots is generic and versa-
tile, with various applications and further analysis methods

that build upon the construction of those scatterplots. There-
fore, any improvement in computational efficiency or qual-
ity will benefit those applications. For example, critical line
structures can be extracted from continuous scatterplots to
obtain further insight in the structure of the data [LT10]. As
another example, 2-D joint histograms could, in the form of
continuous scatterplots, support information-theoretic flow
visualization [XLS10]. Continuous scatterplots may also be
interpreted as joint probability density functions that facil-
itate the identification of mutual information in image reg-
istration problems or between multiple 3-D scalar fields in
multi-field data analysis [NN11]. Continuous scatterplots
also play an important role wherever kernel estimates have
to be computed for feature analysis. For example, they could
serve as an alternative for the continuous density distribu-
tion functions that are used for volumetric transfer function
generation [MWCE09]. Finally, the 1-D version of contin-
uous scatterplots—continuous histograms—can be used to
examine isosurface statistics for analyzing 3-D scalar fields
[CBB06, SSD∗08].

Our construction algorithm relies on splatting. We adopt,
modify, and extend the splatting method by Westover et
al. [Wes89], which was introduced as a forward-mapping al-
gorithm for direct volume rendering. In contrast to raytrac-
ing techniques where pixel intensities are computed by map-
ping the image plane to the data space, volumetric splatting
computes the contribution of samples from the data space to
the image plane. Since ray integration within a sample’s re-
construction kernel is independent of its density, the integral
can be pre-computed for a given view direction. The result-
ing image-plane footprint of the kernel is then used to com-
pute the projected image of all data space samples and only
has to be recomputed if the viewing direction changes. For
continuous plots, however, the viewing transformation de-
pends on the data, such that footprints have to be computed
for every sample individually. Furthermore, the splats for
parallel coordinates undergo further transformation accord-
ing to the point-line duality between Cartesian and parallel-
coordinates domains; therefore, those splats differ substan-
tially from those in scatterplots and direct volume rendering.

There is recent work by Zhou et. al. [ZCQ∗09] that also
applies splatting in the context of parallel coordinates: a
Gaussian reconstruction filter is used to adjust the density
of discrete samples in a fixed neighborhood of a line seg-
ment; by successively accumulating these line splats, a dense
field of lines is obtained. It is important to note that the
approach of Zhou et. al. [ZCQ∗09] reconstructs densities
in image space and relies on discrete samples. In contrast,
our approach reconstructs continuous densities in the spatial
domain and maps them to the parallel-coordinates domain.
Therefore, both approaches are independent, both in terms
of the type of input data, the shape and behavior of the foot-
prints, the structure of the construction algorithm, and the
visualization goal.
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Laur [LH91] extended the original volume splatting ap-
proach with a progressive refinement algorithm. He uses an
octree to subdivide the spatial grid into a hierarchical struc-
ture and then draws splats covering the size of a cell in the
octree. We employ a similar refinement strategy, although
we use arbitrary resampling techniques instead of a subdivi-
sion approach.

An approach similar to splatting densities has recently
been presented by Feng et. al. [FKLT10] for the visualiza-
tion of uncertain data samples. In their work, a probabil-
ity density function is estimated using normally distributed,
uncorrelated kernels. Hence, all samples in the scatterplot
are represented by scaled Gaussian footprints. In contrast,
our model uses gradient information contained in the data
to transform the density distribution to both scatterplots and
parallel coordinates. Furthermore, densities are derived ana-
lytically to allow for the precomputation of splat footprints.

3. Footprint Computation

This section describes the computation of density footprints
for reconstruction kernels in the original spatial domain of
the data and the respective mapping to scatterplots and paral-
lel coordinates. Note that we use terminology from measure
theory and thereby use weighted, non-normalized densities
(as opposed to the probability density typically used in the
statistics literature). The two main ingredients for the math-
ematical model of the statistical plots are:

• Density function s(x) : R3 → R, x 7→ s(x), which de-
scribes the scalar-valued density over the spatial domain

of the data set, i.e., the importance of the respective spatial
part of the data.

• Map τ : R3 −→ R
n
, x 7→ τ(x), which represents the mul-

tivariate data set defined on the same spatial domain as
above.

Note that for most information visualization data, there is no
spatial domain and thus no concept for s and τ . In typical
applications of scientific visualization, τ is given on a grid
where each grid point has attached a respective n-tuple of
data values. In-between values (away from grid points) are
reconstructed by an explicitly or implicitly given reconstruc-
tion scheme—typically by trilinear interpolation. For 2-D
scatterplots, n= 2 data attributes are visualized, e.g., temper-
ature and pressure from a simulation in computational fluid
dynamics.

The density s in the spatial domain is typically provided
by the user or originates from some kind of external feature
definition. If not stated otherwise, a constant density s(x)= 1
can be assumed.

The mathematical problem setting can now be formulated
as follows: what are the transformed density functions in the
scatterplot domain (which is identical to the data domain
in [BW08]) and in the parallel-coordinates domain? These

transformed density functions explicitly depend on the den-
sity s in the spatial domain and are implicitly affected by the
map τ , which connects from the spatial domain to the other
two domains. Figure 1 illustrates the three domains and the
example of the mapping of a typical splatting kernel.

We use the following mathematical terminology, similar
to previous work [BW08, HW09]. Variables with Latin let-
ters refer to quantities in the spatial domain, e.g., position x

or density s. Variables with Greek letters denote quantities in
the scatterplot and parallel-coordinates domains, e.g., ξ for
the position in the scatterplot domain and η for the position
in the parallel-coordinates domain.

In the following, we first define splats in the spatial do-
main and discuss the map τ in the context of sampling at
the center points of splats (Section 3.1). Then, we restrict
the discussion to the transformation of a single splat tem-
plate, applying this model to continuous 2-D scatterplots
(Section 3.2). Finally, we describe the analogous transfor-
mation of splats to parallel coordinates (Section 3.3). Here,
we restrict ourselves to the bivariate case, n = 2. The general
case of multivariate parallel-coordinate plots is easily cov-
ered by applying the result for n = 2 to all pairs of adjacent
parallel-coordinate axes.

3.1. Spatial Domain and Data-Set Function

Following the splatting approach for direct volume visual-
ization [Wes89], we represent the density in the spatial do-
main by a weighted sum of kernels at various spatial loca-
tions. Then, the overall density on R

3 is given by

soverall(x) = ∑
i

wi si(x)

with scalar-valued weights wi and kernels si.

Similar to splatting in volume rendering, the kernels si

are assumed to be derived from a single template function
that is just shifted to different positions. Furthermore, such a
template is usually assumed to be spherically symmetric due
to reasons of isotropy.

The main idea of splatting is that the template is trans-
formed in a pre-processing step to form a splat. The trans-
formation of the overall density soverall is then computed by
overlaying the splats with the same weights wi. This ap-
proach requires that transformation and weighted summa-
tion are commutative, which is true for continuous scatter-
plots and parallel coordinates because both are computed by
linear operators.

Now, we consider the concrete example of a 3-D Gaussian
kernel in the spatial domain:

si(x) = e
−‖x−xi‖2

k2

The kernel si is centered at the point xi with relative “ra-
dius”, bandwidth, or smoothing factor k. The Gaussian ker-

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



J. Heinrich, S. Bachthaler, D. Weiskopf / Progressive Splatting of Continuous Scatterplots and Parallel Coordinates

x y

z

ξ1

ξ2

η1

η2,ξ1 ξ2

Figure 1: A spherical reconstruction kernel in the spatial domain (left) maps to an ellipse in the scatterplot domain (middle)

and a hyperbola in the parallel-coordinates domain (right).

nel is popular in volume rendering due to its fast fall-off be-
havior with increasing distance from the kernel center. We
use it for the same reason. Please note that we apply non-
normalized Gaussians; normalization is implicitly absorbed
by the weights wi.

The sample positions xi may be arbitrarily chosen. In par-
ticular, they are independent from positions of grid points
of the data set. Typically, the sample positions xi are evenly
distributed in space, e.g., by putting them on a regular sam-
pling grid or by applying low-discrepancy point sets (see
Section 5). The usual case of constant overall density soverall

can be implemented by even distribution of sample positions
and constant weights wi.

In the rest of this section, we will only consider a single
Gaussian kernel. For simplicity of notation, this kernel is de-
noted

s(x) = e
−‖x−x0‖2

k2 (1)

and centered at x0.

Furthermore, we assume that τ is a C1 continuous func-
tion. Then, τ can be approximated by Taylor expansion
around x0 up to first order:

τ(x) = τ(x0)+Dτ (x0)(x−x0)+O(‖x−x0‖2)

where Dτ (x0) is the Jacobian of τ (i.e., the matrix of partial
derivatives with respect to spatial locations) as evaluated at
x0. This approximation leads to a linearization of τ around
x0, which is appropriate within a sufficiently small neigh-
borhood around the kernel center, i.e., for sufficiently small
kernels. In the limit process of infinitesimally small kernels,
the linearized τ converges to the true map. In the remainder
of this section, we will work with the linearization of τ . This
implies that derivatives of τ are constant. We also assume
non-degenerate cases where τ is not constant and its partial
derivatives lead to linearly independent gradient vectors.

3.2. Scatterplot Domain

Let us now transform the density function described by the
kernel s(x) in the spatial domain to the corresponding den-
sity function σ(ξ ) at position ξ = (ξ1,ξ2)

T in the 2-D scat-
terplot domain. We also call σ(ξ ) footprint of the splat or,
in short, just splat or footprint.

Using Eq. (9) from reference [BW08], the footprint is

σ(ξ ) =
∫

τ−1(ξ )

s(x)

|Vol(Dτ (x))|
dx

where Dτ denotes the 2× 3 Jacobi matrix for the bivariate
data map τ . The volume measure |Vol(Dτ (x))| is given by
the vector cross product of the two gradients of the compo-
nents of ξ with respect to the spatial domain (see Eq. (10) in
reference [BW08]):

|Vol(Dτ (x))|= ‖∇ξ 1 ×∇ξ 2‖
Since τ is linear, the partial derivatives are constant and the
volume measure can be moved outside the integral. In ad-
dition, by using the definition of the Gaussian kernel from
Eq. (1), we obtain:

σ(ξ ) =
1

‖∇ξ 1 ×∇ξ 2‖

∫

τ−1(ξ )
e

−‖x−x0‖2

k2 dx

Since τ is linear, the isosurfaces corresponding to isovalues
ξ1 and ξ2 are planes with normal vectors ∇ξ 1 and ∇ξ 2, re-
spectively. Then, the intersection of the two isosurfaces—
identical to τ−1(ξ )—is a straight line. Integration of the
Gaussian kernel along this infinitely long line resembles the
projection of splats in volume rendering. Therefore, similar
to volume rendering, we also retain Gaussian splats in the
scatterplot domain. According to the mathematical deriva-
tion in the appendix, the density in the scatterplot domain
reads

σ(ξ ) =

√
π

‖∇ξ 1 ×∇ξ 2‖
e−(ξ−ξ0)

T E(ξ−ξ0) (2)

Here, ξ0 = τ(x0). The matrix E = 1
k2

(

Dτ DT
τ

)−1
is a

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



J. Heinrich, S. Bachthaler, D. Weiskopf / Progressive Splatting of Continuous Scatterplots and Parallel Coordinates

2 × 2 symmetric, positive definite matrix that can be
used to parameterize the Gaussian kernel. Following West-
over [Wes90], E defines the extents and rotation angle of
the screen-space ellipse that is obtained after transformation
of a sphere using the Jacobian Dτ (x) as generalized view-
ing transformation. The transformation to the standard 2-D
Gaussian only depends on the scales Sx and Sy along the
main axes of the ellipse as well as the angle θ by which the
standard Gaussian is rotated. Due to the symmetry of E, Sx,
Sy, and θ are given by the eigenvalues and eigenvectors of
the inverse transformation E−1:

E−1 = k2Dτ DT
τ = k2

[

a b

b c

]

with

a = ∇ξ T
1 ∇ξ 1

b = ∇ξ T
1 ∇ξ 2

c = ∇ξ T
2 ∇ξ 2

After calculating the characteristic polynomial of E−1 and
with e =

√

(a− c)2 +4b2, the scales are computed from the
eigenvalues

Sx =
√

λ1, Sy =
√

λ2

where λ1 = k2

2 (a+ c+ e) and λ2 = k2

2 (a+ c− e). If b = 0,

E−1 is a scaling matrix such that θ = 0. With b 6= 0, the
eigenvectors can be written as

v1 = (b,λ1 −a)T
, v2 = (b,λ2 −a)T

and θ corresponds to the angle of the eigenvectors to the unit
vector (1,0)T :

θ = arccos

(

b
√

b2 +(λ1 −a)2

)

Now, the footprint of any sample can be transformed to
a generic template footprint—usually the standard Gaussian

defined by e−‖x‖2
—using a scaling matrix with Sx and Sy

multiplied by a matrix for rotation around the z axis with
angle θ .

Although the splat computation for scatterplots resembles
the one for volume rendering, there is an important differ-
ence: the scatterplot-domain splat additionally depends on
τ , which is not the case in volume rendering.

3.3. Parallel-Coordinates Domain

Analogous to the previous transformation from spatial do-
main to scatterplot domain, let us now examine the trans-
formation of density to the parallel-coordinates domain. Ac-
cording to Eq. (7) from reference [HW09], the footprint in
parallel coordinates reads

ϕ(η1,η2) =
1

‖ñ‖

∫

g
σ(g(t))dt (3)

where ϕ is the density of a point η = (η1,η2)
T in parallel

coordinates with the dual line

g(t) =
η2

‖ñ‖n+ tn⊥ (4)

in the coordinates of the scatterplot domain. The vector n—
the vector that is perpendicular to g—reads

n =
ñ

‖ñ‖ , ñ = (1−η1,η1)
T

Note that n and its perpendicular tangent vector, n⊥, only
depend on η1, whereas the distance of g to the origin,

η2

‖ñ‖
linearly depends on η2.

Plugging Eqs. (4) and (2) into Eq. (3) yields the dual foot-
print of Eq. (2) in parallel coordinates:

ϕ(η) =
1

‖ñ‖

∫

g
σ(g(t))dt

=

√
π

‖∇ξ1 ×∇ξ2‖ ‖ñ‖

∫ ∞

−∞
e−(g(t)−ξ0)

T E(g(t)−ξ0) dt

=
π

‖∇ξ1 ×∇ξ2‖ ‖ñ‖‖d‖ e
− ‖v‖2+A2

k2 (5)

with v=Dτ (x)
−1( η2

‖ñ‖n−ξ0), A= d·v
‖d‖ and d=Dτ (x)

−1n⊥.

Equation (5) can be derived using a similar approach as for
Eq. (2) presented in the appendix.

4. Sampling and Progressive Refinement

The previous section provided the basis for rendering a sin-
gle splat in the continuous statistical plot. The overall plot
is obtained by applying this process to many different splats
that densely cover the spatial domain, leading to an appropri-
ate representation of the overall density by accumulating the
splats with additive blending. Besides the data values, the
partial derivatives of the data are reconstructed at the splat
sample so that the position, size, and orientation of the splat
can be determined. In this way, the generic footprint tem-
plate is transformed according to Section 3. Using the in-
verse transformation, a splat is rendered as a rectangle with
the correct texture coordinates and density values.

The generic template footprints for scatterplots are dis-
cretized in a 2-D texture during pre-processing. The 2-D

standard Gaussian e−‖x‖2
is sampled on the uniform grid

of the texture, which then serves as a lookup table during
rendering. The rendering algorithm only needs support for
2-D textures and blending. Therefore, it lends itself immedi-
ately to direct and efficient GPU implementation. Due to the
rotation ↔ translation duality between parallel coordinates
and cartesian coordinates, the hyperbolic standard footprint
from Eq. (5) cannot be sampled to a single 2-D texture, but
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can be evaluated efficiently on the GPU using a fragment
program.

Conventional discrete scatterplots and parallel-
coordinates plots of scientific data are commonly used
to visualize the data values attached at the input grid
points. For large datasets, however, rendering becomes
prohibitively slow hindering interactive exploration of the
data. In this case, our splatted continuous plots allow us to
trade accuracy for rendering performance by resampling the
data at a lower sampling rate. This may be implemented
by skipping some of the input data points or by resampling
at a few, freely chosen positions on the spatial domain. In
contrast, for very small datasets, additional samples may
be distributed over the spatial domain to improve image
quality. A key observation is that the continuous plots are
based on samples that are completely independent from the
number and positions of the grid points of the dataset. We
recommend making use of this flexibility by employing
sampling positions obtained from low-discrepancy se-
quences [Nie92], such as Halton or Hammersley sequences,
because they guarantee even coverage of the spatial domain
and, at the same time, avoid aliasing or moiré artifacts from
regular sampling.

We further improve the splatting technique by extending
it to progressive rendering. Due to the linear superposition
of splats, progressively sampled intermediate images can be
combined by linear superposition as well. More specifically,
we generate a sequence of several, independent continuous
plots of low sampling resolution that are then accumulated
in a separate image (e.g., an offline rendering target on the
GPU). To guarantee mass conservation of the transformed
densities (see details on mass conservation in [BW08,BW09,
HW09]), single images I1 and I2 are composited using the
over operator [PD84] and a fixed value for α :

I = αI1 +(1−α)I2 with 0 ≤ α ≤ 1

If both intermediate image observe mass conservation (i.e.,
each has the same overall mass M as accumulated from the
densities or all pixels), then the blended image is guaranteed
to have identical mass as well because mass is also subject to
alpha blending: αM +(1−α)M = M. Here, α is a param-
eter controlling the contribution of densities from a single
splatting step to the final image.

The footprints from Section 3 further depend on the
choice of the smoothing parameter k, which is a measure for
the “radius” or bandwidth of the Gaussian kernel in the spa-
tial domain. This parameter is transported to the scatterplot
and parallel-coordinate domains, where it affects the extents
of the footprints to be drawn. On the one hand, large ker-
nels provide a better coverage of, and higher overdraw on,
the reconstructed spatial area and thus allow us to reduce the
sampling resolution. On the other hand, large splats intro-
duce a large error to the overall density, resulting in poten-
tially overblurred images. Furthermore, large splats have a

211 212 213 214 215

0
10

20
30

40
50

60

Discrete

k = 0.5

k = 0.75

k = 1.0
Continuous projected
tetrahedra

Number of samples

F
ra

m
es

pe
r

se
co

nd

Figure 2: Rendering performance for splatted continuous

scatterplots of the “bucky ball” dataset depending on splat

size and sampling frequency. From the plot, a linear de-

pendancy between sampling resolution and frames per sec-

ond can be concluded. Note that, for comparison, the per-

formance of traditional discrete scatterplots rendered with

point-size one and of continuous scatterplots rendered with

the projected tetrahedra algorithm are included. The tradi-

tional scatterplots are limited to 60 frames per second by the

frame refresh rate of the test-hardware. In contrast, the fram-

erate of continuous scatterplots lies well below one frame

per second.

negative impact on rendering performance as the size of the
primitives that have to be processed increases. Analogously,
small kernels produce a more accurate, but potentially non-
smooth sampling of the density distribution.

To describe the relative smoothness of the continuous sta-
tistical plots, we define the coarseness

c =
S

kN
(6)

where N is the number of splats, S is the total number of grid
points and k is the bandwidth of the Gaussian reconstruction
kernel in the spatial domain. As a reference for uniform grids
with spacing one, the coarseness equals one if all grid points
are sampled using a Gaussian kernel with k = 1. According
to Eq. (6), the relative coarseness increases with decreasing
number of splats and with decreasing splat size. This can be
used in addition to alpha blending to obtain a progressively
refining image by decreasing both the blending factor and
the kernel size in every rendering frame.
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Figure 3: The “bucky ball” dataset rendered using three different approaches for scatterplots: Discrete scatterplot (left), splat-

ted densities (middle), and the original continuous approach using projected tetrahedra (right). Density is represented by color,

where black denotes low density and white denotes high density. Although the splatted and discrete plots use exactly the same

samples, the splatted image provides a better approximation to a continuous density distribution. Please note that the plots

are not supposed to be identical, as the original approach uses a piecewise linear interpolation model on a tetrahedral grid,

whereas the discrete and splatted versions are based on piecewise trilinear interpolation on a uniform grid. Nevertheless, the

plots show an almost identical density distribution, where the prominent arc is an indicator for a material boundary.

5. Results

In this section, the results obtained with splatting are com-
pared with discrete and previous non-splatting continuous
plots with respect to rendering performance and visual qual-
ity. First, we compare results of all of the three rendering
techniques with respect to their visual appearance. Then,
some results obtained using resampling and progressive re-
finement are shown. We also investigate the relation of splat
size and sampling resolution with respect to rendering per-
formance and image coarseness. All measurements (includ-
ing images) were produced with an implementation based on
C++ and GLSL. The implementation was tested on a Win-
dows PC with Intel(R) Core(TM) 2 Quad CPU running at
2.4 GHz and an NVIDIA GeForce 8800 GTX graphics card.

While discrete and prior continuous plots need not to
be parameterized, our splatting algorithm depends on the
choice of the kernel size and the number of samples. Figure 3
compares a discrete scatterplot of the “bucky ball” dataset
(a common test-dataset in volume rendering representing a
spherical fullerene) comprising 32× 32× 32 data samples
given on a uniform grid with the continuous versions ren-
dered using our splatting approach and the projected tetrahe-
dron algorithm [BW08]. The data dimensions are the orig-
inal scalar value (horizontal axis) and its gradient magni-
tude (vertical axis). The arcs emerging in these types of plots
can be used as an indicator for material boundaries. As the
“bucky ball” dataset consists of several spheres (represent-
ing atoms in a fullerene molecule), material boundaries cor-
respond to the sphere surfaces. See [KKH02] for further ex-
amples.

As discussed in Section 4, increasing splat size allows us
to reduce the sampling resolution, while the level of coarse-

ness of the resulting image is approximately maintained.
The relationship between these parameters is illustrated in
Figure 4. Here, every plot was rendered without progres-
sive refinement but with different sampling resolutions and
reconstruction kernel sizes. As expected, the images be-
come smoother with increasing number of samples and with
increasing splat size. Furthermore, coarseness is approxi-
mately maintained when doubling the number of samples
with half of the kernel size and vice versa.

Figure 2 shows a performance analysis for different splat
sizes and sampling rates, compared with traditional discrete
scatterplots and continuous scatterplots using the original
projected tetrahedra algorithm. From the measurement data,
a linear dependency between sampling rate, splat size, and
rendering performance can be concluded (note the log2 scale
of the x axis). Although performance decreases with the
number of splats, the progressive refinement algorithm in-
troduced in the previous section can still be used to achieve
interactive framerates, as the total number of splats is di-
vided into successive rendering frames. As a consequence,
the algorithm scales well with dataset size and can eas-
ily be adopted for streaming data, as only a fixed number
of samples is required for the individual rendering steps.
This also includes large simulation data or time-dependent
data, where visualization may be required in real-time. Fi-
nally, efficient rendering of statistical plots naturally facili-
tates the implementation of stacked displays or small mul-
tiples, where many instances of the same plotting technique
are used to visualize different parts, projections, or subareas
of the dataset. For example, the scatterplot matrix may be
extended using progressive refinement.

Using the derivation in Section 3.3, the progressive refine-
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Figure 4: The effect of the sampling resolution and the kernel size parameter with respect to the overall coarseness of the plot.

In the matrix shown above, the number of samples increases from top to bottom while the splat size increases from left to right. In

both cases, the corresponding images become smoother. At the same time, however, increasing splat sizes result in less accurate

plots, as can be seen in the rightmost column. Here, the blur introduced by larger splats makes the image appear “wider”. The

bottom row shows the L2 error of densities from the splatted plots with respect to a traditional, discrete scatterplot rendered

with 107 samples of point-size four. While the convergence behavior is similar for all columns, the total error decreases with

increasing smoothing factor k.

ment algorithm can also be applied to parallel coordinates
without change. The relation of splat size and sampling res-
olution regarding the coarseness of the resulting image re-
mains the same, although smooth images are obtained with
fewer samples due to the inherently stronger overdrawing
of primitives in parallel coordinates. Figure 5 illustrates an
example of a splatted continuous parallel-coordinates plot
of a single timestep of the IEEE Visualization 2004 con-
test dataset “Hurricane Isabel” with a spatial resolution of

500× 500× 100. The splatted image presented in Figure 5
was created using a subset of 103 samples. For comparison,
a discrete version with 2.5×104 samples is shown. As with
scatterplots, the splatted parallel-coordinates plot yields a
good approximation to the continuous version with only a
fraction of the samples given on the input grid.
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Figure 5: Splatted parallel coordinates (103 samples, left) and discrete parallel coordinates (2.5×104 samples, right) showing

three dimensions (“height”, “temperature” and “pressure”) of the first timestep of the simulation dataset “Hurricane Isabel”.

The plots indicate a negative correlation between “height” and “temperature” and a high density of samples with low “temper-

ature” and mid-level “pressure”. Note that the density distribution of the discrete version can be approximated using splatting

with only a fraction of the original samples.

6. Conclusion

We have presented a splatting algorithm for construct-
ing continuous 2-D scatterplots and multivariate parallel-
coordinates plots. The core element of our approach is the
analytic transformation of a 3-D Gaussian kernel from the
spatial domain to the scatterplot and parallel-coordinates do-
mains, respectively. Discretized versions of these splats are
pre-computed and stored in textures. During runtime, our
progressive rendering algorithm subsequently adds more and
more splats with decreasing variance to the plot, improving
image quality. The main advantage of progressive render-
ing is that previews of the exact plot are available extremely
fast, ideally supporting interactive data analysis especially
for large data sets. Another advantage of splatting is that
image quality can be gradually balanced with computation
speed by adjusting the number of splats and splat size.

We have restricted ourselves to Gaussian kernels in the
spatial domain. Our rendering approach is not necessarily
limited to this kernel type. Other kernels would just require
a different pre-computation of footprints. However, there is
no apparent need for other kernels because Gaussian ker-
nels with freely chosen width are capable of capturing den-
sity functions very well. An important open question for fu-
ture work, though, is how we can determine the minimum
number of splats beforehand that would guarantee a certain
plot quality. In other words, can we develop the analog of
Shannon’s sampling theorem for sampling continuous scat-
terplots or parallel-coordinates plots?
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Appendix

This appendix provides the derivation of Eq. (2). We first
note that the density of a point ξ in the data domain is com-
puted using the integration in Eq. (2). Without loss of gener-
ality, we assume that the spatial domain is unit-less.

As ξ1 and ξ2 both represent isosurfaces in the spatial do-
main that are planes, their intersection τ−1(ξ ) is a straight
line that we write in parametric form as

l(t) = p′+ tr

with normalized tangent vector r = ∇ξ1×∇ξ2

‖∇ξ1×∇ξ2‖ and with

p′ = x0 +D−1
τ (ξ −ξ0) (7)

where Dτ denotes the Jacobian of τ evaluated at x0 and
D−1

τ = DT
τ (Dτ DT

τ )
−1 is the right inverse of Dτ .

Please note that Eq. (7) also defines a plane spanned
by the gradients ∇ξ1 and ∇ξ2 containing x0. Now, solving
Eq. (2) remains a matter of integrating a Gaussian over a line,
which can be solved using a similar derivation as presented
in [KPI∗03]. We set p = D−1

τ (ξ −ξ0) and note that r is per-
pendicular to p such that rT p = 0. Also, ξ0 = τ(x0). Using
the derivation given in [KPI∗03] (replacing K with D−1

τ , d

with r, and v′1 with p), we obtain:

σ(ξ ) =
1

‖∇ξ 1 ×∇ξ 2‖

∫

τ−1(ξ )
e
− 1

k2 (x−x0)
T (x−x0)d2x

=
1

‖∇ξ 1 ×∇ξ 2‖

∫ ∞

−∞
e
− 1

k2 (p
′+tr−x0)

T (p′+tr−x0)dt

=

√
π

‖∇ξ 1 ×∇ξ 2‖
e
− 1

k2 pT p

=

√
π

‖∇ξ 1 ×∇ξ 2‖
e−(ξ−ξ0)

T E(ξ−ξ0)

with E = 1
k2

(

Dτ DT
τ

)−1
.
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