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M
ultidimensional data is regularly produced by 
simulations or measurements in virtually any 
scientific or engineering field. One example is 
the set of data attributes computed in computa-

tional fluid dynamics (CFD): such simulations typically in-
clude the velocity field of the fluid along with temperature, 
pressure, and other quantities of the flow. Other examples 
include amino acid attributes of protein structures in mo-
lecular biology or multidimensional state variables gathered 
from sensor networks.

These examples show that it’s important to understand 
the distribution and relationship of data values—even if we 
ignore their connection to the original 2D or 3D simulation 
domain.

Standard visualization techniques for data attributes in-
clude histograms (for one data dimension) and scatterplots 
(to show two data dimensions simultaneously). But what if 
we want to show more than two data dimensions? Then we 
can split them, showing them side by side. We can look at 
histograms individually or put several histograms for differ-
ent data dimensions next to each other. Or we can use a col-
lection of scatterplots for varying pairs of data dimensions. 
We can even do this systematically, putting all combina-
tions of two data dimensions in a scatterplot matrix. 

But this approach has a serious weakness: it doesn’t show 
the connection between more than two data dimensions. Here, 
parallel coordinates come into play because they aren’t re-
stricted to displaying just two data dimensions. In fact, they’re 
scalable in the number of dimensions visualized—we just add 
another parallel axis for any additional data dimension. 

The notion of parallel coordinates dates back to Mau-
rice d’Ocagne in 1885.1 Parallel coordinates as a means of 

multidimensional data visualization were developed and 
popularized by Alfred Inselberg2 and Edward Wegman.3 In 
this article, we describe the basic concepts of parallel coor-
dinates as a tool for multidimensional data visualization. To 
this end, we discuss the geometric construction of parallel 
coordinates, issues related to the visualization of large data 
typical for scientific and engineering disciplines, and how 
we can interact with the visual representation of multidi-
mensional datasets. 

We’ll describe details of implementations and applica-
tions in a follow-up article in this department. For back-
ground reading on parallel coordinates, we recommend 
Inselberg’s book4 and our state-of-the-art report.5

Geometry of Parallel Coordinates
How do we construct a parallel-coordinates plot? Let’s start 
with a simple case: just two data dimensions. Figure 1 shows 
how a 2D data point is transformed from the domain of 
the scatterplot to the corresponding line in the domain of 
the parallel coordinates. The scatterplot domain is spanned 
by the two orthogonal axes of the two data dimensions, 
whereas the data axes are parallel in the domain of the par-
allel coordinates. The data point is mapped to a line in the 
parallel-coordinates domain so that this line intersects the 
two parallel-coordinates axes at the respective data values 
for the two data dimensions. If there’s more than just one 
data point, we just have to draw several lines in parallel 
coordinates.

Now we know how to map a point from the scatterplot 
to parallel coordinates. Can we also transform points from 
parallel coordinates back to the scatterplot? In fact, we can. 
Figure 1a illustrates how a collection of points coincide on 
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a line in the scatterplot. When we transform these points to 
parallel coordinates, they lead to a set of lines that intersect 
in a single point (Figure 1b). Therefore, we can relate this 
common intersection point in parallel coordinates to the line 
in the scatterplot—in other words, this point is transformed 
back from parallel coordinates to the scatterplot. There’s a 
correspondence between points and lines in both ways: the 
point-line duality. (For lines with a positive slope in the 
scatterplot domain, the corresponding pattern in parallel 
coordinates is another set of lines; see Inselberg’s book4 for 
details on how to establish the duality for this special case.)

So far, we’ve restricted parallel coordinates to two 
data dimensions. However, it’s simple to extend them to n 
dimensions. Figure 2 shows that we just put more and more 
parallel axes next to each other. Each pair of neighboring 
parallel axes is handled as we explained above; here, we 
clip the line that corresponds to a data point so that the 
line segment stays within the bounds of the two parallel 
coordinates axes. Next, we construct a straight line segment 
for each pair of neighboring axes. This leads to a polygonal 
line that intersects the parallel coordinates axes at the 
respective data values. In other words, an n-dimensional data 
point is mapped to a polygonal line in parallel coordinates. 

Visual Patterns
We’ve seen how we can transform back and forth between 
scatterplots and parallel coordinates. How can we use the 
geometry of the parallel coordinates to visualize and analyze 
multidimensional data? How can we read and interpret a 
parallel-coordinates plot? 

Let’s have a look at typical visual patterns that you may 
find in parallel coordinates. First, we restrict ourselves to 
patterns in 2D parallel coordinates; examples with more 
data dimensions will follow later. The most striking pattern 
is the accumulation point in parallel coordinates when we 
plot data with negative linear correlation. Perfect linear 
correlation leads to a single accumulation point, following 
the point-line duality (Figure 3a). However, even more 
realistic cases with just approximate linear correlation still 
lead to some smeared-out accumulation region (see Figure 
3b). We just need to search for such regions with many line 
intersections to spot negative correlation. 

In contrast, positive correlation leads to parallel or fan-
shaped lines in parallel coordinates (Figure 3c). This is a 
less striking visual pattern and thus can be more difficult to 
perceive than negative correlation,6 but we can nevertheless 
use it to understand the data. 

Nonlinear data behavior leads to other visual patterns. 
These are sometimes easier to spot by observing the enve-
lope of lines, which can be an indicator for further dualities 
based on the point-line duality, such as curve-curve duali-
ties.4 A prominent example is the ellipse-hyperbola duality 
(Figure 3d): we can search for hyperbola patterns in parallel 

coordinates to find elliptical shapes in the scatterplot that 
might indicate a spherical or elliptical cluster of data points. 
Another pattern originates from data consisting of separate 
clusters: Figure 3e shows an example with two clearly sepa-
rated clusters, visible in the scatterplot and the parallel-coor-
dinates plot alike.

It’s clear that these visual patterns might not be obvious 
right from the beginning. One issue is that you have to learn 
how to read parallel coordinates. In fact, with increasing 
exposure to and experience with working with parallel 
coordinates, you will become more proficient in identifying 
relevant visual patterns.

Interacting with Parallel Coordinates
We’ve seen that negative correlation leads to very strong 
visual patterns in the form of accumulation points or 
regions. These patterns are less pronounced for positive 
correlation.6 By negating one parallel-coordinates axis, 
we can turn positive into negative correlation. Therefore, 
negating is a relevant interaction element. Similarly, the user 
should be supported in scaling data values to put them into 
the right perspective.

Figure 1. Geometry of parallel coordinates. (a) Data points in a 
scatterplot correspond to (b) lines in parallel coordinates: these 
lines intersect the two parallel axes of the parallel coordinates 
at the respective data values. Point-line duality is established as 
points coinciding on a line (dashed) in the scatterplot map to lines 
that intersect at a point (solid black dot) in parallel coordinates.

Figure 2. Parallel coordinates for multiple data dimensions and 
one data point, shown in the form of a polygonal line.
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Let’s have a look at n-dimensional parallel coordinates. 
We want to follow the distribution of the data values across 
data dimensions, essentially reading along the polygonal 
lines in the plot. It’s very useful to select and highlight 
subsets of the data in parallel coordinates, as in Figure 4, 
which features data collected by Edgar Anderson.7 With 
highlighting, we can easily follow sets of polylines across 
the data dimensions. The selection is typically done in an 
interactive fashion; often, the user marks interesting areas 
in the plot by mouse interaction. This selection process 
is also called brushing. Parallel coordinates come with 
interesting geometric properties, including the point-line 
duality. Therefore, we have several options of how we might 
want to brush data entries. One approach lets us brush data 

values or ranges thereof on an axis in parallel coordinates: 
axis-aligned brushing (Figure 5a). An alternative method is 
angular brushing8: a range of angles is selected in parallel 
coordinates (Figure 5c). In this way, for example, we can 
highlight positive slopes (correlations) in the data. Yet 
another approach supports polygon-shaped brushes in the 
parallel-coordinates domain, corresponding to rotated 
boxes in the scatterplot domain (Figure 5b).

The full power of brushing emerges in combination 
with other visualization views, for example, 3D renderings 
of simulation results. The sidebar “Coordinated Multiple 
Views” provides more background information.

Even with brushing, it’s clear that the visual patterns 
strongly depend on the order of the coordinate axes. 

Figure 3. Visual patterns in scatterplots and parallel coordinates: (a) perfect negative correlation, (b) less pronounced negative 
correlation, (c) perfect positive correlation, (d) ellipse-hyperbola duality, and (e) two clusters.
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Correlations between two data dimen -
sions are best shown with a pair of 
neighboring parallel-coordinates axes. 
What’s the best order of axes? Some 
approaches use automatic data analysis 
to identify the most relevant pairs of axes 
and put them next to each other.9 Other 
approaches allow the viewer to change 
the axis order interactively or provide 
a set of individual plots to explore all 
possible pairwise correlations.10 Even 
with some (initial) automatic order, any 
useful parallel-coordinates visualization 
tool will support the user in modifying 
the axis order, to interactively explore the 
data. 

Density Plots
We’ve been assuming that the actual 
visual representation of the parallel-
coordinates plot is simple: just draw a 
polygonal line for each data point. More specifically, let’s 
just draw opaque lines. We produced the examples shown 
so far by using this rendering approach. However, this 
way of rendering doesn’t work for large datasets—large in 
the sense of many data points. If it is, then the parallel-
coordinates plot will suffer from much overplotting and 
visual clutter. Unfortunately, the issue of large data is 
natural to most applications in science and engineering 
because simulations and measurements tend to deliver 
large numbers of data points.

One popular approach to large-data parallel co-
ordinates replaces the opaque lines with semitransparent 
ones. In this way, we can see a varying density of lines: 
high density in regions of many overlapping lines, low 
density in areas covered by few lines. Such a density plot 
allows us to easily recognize the prominent visual patterns 
that belong to the most frequent characteristics of the 
data, as in Figure 6.

Density plots can be constructed by rendering lines 
with additive blending: we virtually count the number 
of times a pixel is covered by a polygonal line from the 
parallel-coordinates plots. Additive blending is sometimes 
replaced by alpha blending; this blending model isn’t 
order-independent, that is, it allows us to emphasize the 
lines that are rendered late. This only occurs if lines have 
varying density or color. Another alternative uses the 
model of continuous parallel coordinates11: it directly 
transforms densities from the (spatial) computational 
domain—such as the simulation grid—to densities in 
parallel coordinates. 

We think that density plots are highly relevant and 
useful for the typical dataset sizes in science and engineering. 

Figure 4. Brushing lets us compare the values of data samples or clusters over a set of 
dimensions. For this dataset (a popular test dataset of iris flower data collected by Edgar 
Anderson7), a non-metric variable was mapped to a number to represent it in parallel 
coordinates (leftmost axis). This is common practice, as it allows us to select groups of 
data samples. We highlighted three different groups with separate colors.

Figure 5. Different types of brushing in parallel coordinates (shown 
left) and the corresponding selection in the scatterplot (right): (a) axis-
aligned brushing, (b) polygon-shaped brush, and (c) angular brushing.
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Coordinated Multiple Views

Coordinated multiple views are a popular approach to design-

ing visual interfaces that facilitate the visual analysis of 

complex data. The basic idea is that complex data can’t be 

shown in a single visualization alone because there’s just too 

much information to be conveyed in a single image. Instead, we 

can show different types of visualizations in multiple views. The 

multiple views can provide different perspectives on the very 

same data. But how can we build a combined, overall mental 

model of the data from several views? One strategy uses the 

concept of coordination: the views aren’t completely independent 

from each other, but rather react to user interaction in a coordi-

nated sense. 

Brushing-and-linking is a popular approach to coordinated 

multiple views: visualization elements are brushed (that is, se-

lected) in one view, and the selection is automatically applied to 

the other views, highlighting the corresponding elements in these 

views. Early work used brushing-and-linking to coordinate multiple 

scatterplots.1 Brushing is commonly used in scatterplots; it can 

be extended to more complex types of brushes, for example, to 

high-dimensional brushes.2 

It’s even more interesting to link structurally different views: 

data in science and engineering often has some intrinsic spatial 

relationship, and therefore it’s especially useful to link different 

views that complement the perspective of the spatial embedding 

with the distribution of data values. Figure A illustrates this sce-

nario.3 Another similar example is brushing-and-linking between 

scatterplots of data attributes from a simulation and the 3D visu-

alization of the simulation. Helmut Doleisch and his colleagues4 

provide several examples for such coupling. For further reading on 

coordinated multiple views, we recommend the survey by Jonathan 

Roberts.5
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However, we would like to point out alternative strategies, 
such as reduction methods that work on the original data 
before it’s visualized (for example, clustering, principal 
component analysis, and filtering). More details are in our 
report.5

P arallel coordinates are a great tool for visualizing mul-
tidimensional data. With the straightforward mapping 

from data points (in scatterplots) to lines (in parallel coor-
dinates), the concept and basic implementation of parallel 
coordinates are simple. So, why aren’t plots with parallel 

 coordinates as common as scatterplots? We think that one 
important reason is that the visual patterns are very differ-
ent from those in scatterplots and require training before 
they become useful. A related issue is that some visual pat-
terns are quite hard to perceive—especially the visual asym-
metry between visualizing positive and negative correlation 
is striking and makes some aspects of the data less clear than 
with scatterplots. We also think that the need for interac-
tion—in particular, for complex data—might add some 
problems with the acceptance. However, we’re convinced 
that parallel coordinates provide a very useful, complemen-
tary view on multidimensional data. This is particularly true 
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for data that comes with relationships between more than 
two data dimensions. 

You can find more background information and material 
for further reading on Inselberg’s webpage (www.math.tau.
ac.il/~aiisreal) and www.parallelcoordinates.de. We’ll publish 
a follow-up article in this department with more details of 
implementations and practical applications of parallel coor-
dinates. Stay tuned! 
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