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Evaluation of a Bundling Technique for Parallel
Coordinates

Julian Heinrich, Yuan Luo, Arthur E. Kirkpatrick, Hao Zhang and Daniel Weiskopf

Abstract—We describe a technique for bundled curve represen-
tations in parallel-coordinates plots and present a controlled user
study evaluating their effectiveness. Replacing the traditional C0

polygonal lines by C1 continuous piecewise Bézier curves makes it
easier to visually trace data points through each coordinate axis.
The resulting Bézier curves can then be bundled to visualize
data with given cluster structures. Curve bundles are efficient to
compute, provide visual separation between data clusters, reduce
visual clutter, and present a clearer overview of the dataset. A
controlled user study with 14 participants confirmed the effec-
tiveness of curve bundling for parallel-coordinates visualization:
1) compared to polygonal lines, it is equally capable of revealing
correlations between neighboring data attributes; 2) its geometric
cues can be effective in displaying cluster information. For some
datasets curve bundling allows the color perceptual channel to
be applied to other data attributes, while for complex cluster
patterns, bundling and color can represent clustering far more
clearly than either alone.

Index Terms—Visualization techniques, parallel coordinates,
cluster visualization, line and curve bundles, Bézier curves,
density plot.

I. INTRODUCTION

V ISUAL analysis of multidimensional data is required
in many applications. As datasets become increasingly

large and complex, we need effective ways to display, filter,
process, and interpret the information the datasets contain.
Many techniques have been proposed for exploratory visual-
ization of multidimensional data, targeted at both generic and
specific application domains.1 One of the main challenges is
to provide techniques that scale well with respect to the size
of the dataset.

Parallel coordinates are a popular technique for transforming
multidimensional data into a 2D image.2,3 The m-dimensional
data items are represented as 2D lines crossing m parallel
axes, each axis corresponding to one dimension of the orig-
inal data. This technique has been incorporated into several
data visualization and analysis tools, including XLSTAT4 and
GGobi.5 However, experience has shown several problems
with the traditional parallel-coordinates technique. First, the
zig-zagging polygonal lines (or polylines, for short) used for
data representation are only C0 continuous. They generally
lose visual continuation across the parallel-coordinates axes,
making it difficult to follow lines that share a common point
along an axis—this is known as the cross-over problem.
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Second, when two or more data points have the same or similar
values for a subset of the attributes, the corresponding poly-
lines may overlap and clutter the visualization. This artifact
may occur even for medium-sized datasets with a few thousand
points. Finally, clusters and related internal structure of the
data are not represented in the geometry of the plot, except
for implicit visual clustering based on proximity of polylines
at the axes.

Several solutions have been proposed for these problems.
The cross-over problem has been mitigated by replacing
polylines with smooth curves7–11 that interpolate the original
values at the axes. Cluster perception in parallel coordinates
has been facilitated using edge bundling,12–14 where curves of
the same cluster are grouped geometrically. In contrast to the
traditional color-coding of clusters, the resulting curve bundles
also reduce visual clutter by freeing up plot space to provide
an overview of the data.

We propose a variant combining the benefits of both the
above approaches. We use a curve model based on piecewise
cubic Bézier curves that supports bundling at the cluster
centroids. Given a clustering of the data, our method allows
fast construction of the curve bundles while guaranteeing good
visual continuation of the lines. In addition to parametrized
smoothness of lines,11 it also allows for tuning the bundling
tightness, providing a range of representations from pure
polylines to tightly-bundled curve plots, enabling the user to
obtain different views of the data.

We also conducted a controlled user study to compare the
effectiveness of polylines and our curve bundling technique
with respect to cluster perception and correlation judgment.
While variants of polylines and curves have been evalu-
ated11,15 no prior study evaluated the joint effect of these two
features on the perception of clusters and correlations. See
Table I for a summary of the evaluations.

The study showed that curve bundling maintains the users’
ability to recognize correlation between data attributes, a
traditional strength of parallel coordinates. Furthermore, for
revealing clusters to the user, curve bundling is at least on par
with color coding, the traditional way of representing clusters.

TABLE I
EVALUATIONS OF PARALLEL COORDINATES.

Correlation Cluster Identification

Polylines Li et al. 15 Holten et al. 11

Curves This paper Holten et al. 11

Bundling This paper This paper
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(a) (b)

Fig. 1. The cars 6 data displayed as (a) polyline and (b) and bundled plots. Data are clustered by number of engine cylinders (4, 6, or 8). In the bundled
plot, bundling was β = 0.95 and cluster centroids were plotted at their projected values on the bundle axis. The adjectives above each value axis indicate the
interpretation of values closer to the axis top.

Figure 1 compares the polyline version of parallel coordinates
with a version using our technique of bundled curves.

The paper begins with a summary of prior work on polyline
parallel coordinates and variants using curves. Section III
describes the mathematics of our bundled curves, while Sec-
tion IV presents the design of the user study and its results.
This is followed by an extended example in Section V,
showing how bundled curves facilitate detailed analysis the
substructure of clusters in a seven-dimensional data set. This
description is supplemented by a video, available at the
supporting material site. The paper concludes with a summary
of the argument and proposals for future work.

Throughout the paper, we have used example data sets that
are of medium size, ranging from 40–400 data points and three
to nine clusters. We believe that this size allows us to compare
the polyline and bundled representations most directly. Data
sets with larger numbers of points or clusters will typically
require a sophisticated analysis using multiple representations
and extensive interaction by the analyst, making it difficult
to assess the specific contribution of line or curve represen-
tation. The more modest data sets presented in this paper
allow focused comparison and attribution of results to the
representation.

II. RELATED WORK

In parallel-coordinates visualization, points in m-
dimensional space are represented as lines crossing m parallel
axes in 2D, so there is no inherent limit on dimensionality.
The process of discovering multivariate relations in a dataset
is transformed to a 2D pattern recognition problem. Parallel
coordinates were introduced by Inselberg,2,3,16 and extended
by Wegman.17

Traditional parallel coordinates suffer from several prob-
lems, especially for large datasets. One issue is the potentially
heavy over-plotting of lines, resulting in visual clutter. A
proposed remedy is to replace fully opaque, rasterized lines
by a density representation of the plotted lines.18,19 This idea
has been adopted for frequency plots,20 gray-scale mappings
in density plots,21 and high-precision textures in combination
with transfer functions.22 For continuous data, line density can

also be computed analytically using an appropriate reconstruc-
tion kernel.23

The cross-over problem for polylines arises when two or
more lines share common points on an axis. Several authors
have solved this by using smooth curves. Theisel7 proposes a
cubic B-splines model, while Graham and Kennedy8 choose
a quadratic or cubic curve for a particular section depending
on the shape formed by that section and the two adjacent
sections. Moustafa and Wegman9 build smooth curves by
replacing the piecewise linear interpolation of polylines by
interpolation via higher-order sinusoidal functions. Holten11

adds a parameter to the spline-based models8,10 to control
the amount of smoothing. All these techniques guarantee
curve smoothness, alleviating the cross-over problem by giving
different trajectories to points that intersect at an axis. This
allows the analyst to reliably connect the curves on either side
of the axis.

Visual clutter can also be reduced by preprocessing the
data with a clustering algorithm.24 The clusters can then
be displayed by extensions of parallel coordinates.19,25,26

Whereas early clustering work focused on reducing the amount
of displayed data by displaying only markers of entire clusters,
recent work has instead focused on displaying all the data and
revealing details of the internal structure of clusters. Johansson
et al.22 combine specific transfer functions for density plots
with feature animation, showing both an overview of the data
and the inner structure of its clusters. Novotny and Hauser27

extend such cluster-based parallel-coordinates visualization
to additionally display outliers and trends. Zhou28 detects
clusters by splatting lines and applying a Gaussian weight to
proximate lines.

Two recent publications13,14 enhance parallel-coordinates
plots following the same perceptual motivation of geometric
proximity as our method. Zhou et al.13 deform traditional
polylines by applying attracting and repelling forces. By
construction, their method is based on proximity between the
initial polylines and, thus, achieves an implicit, yet fixed type
of clustering. Their method emphasizes the proximity of the
polylines, rather than showing externally provided clusters.
Moreover, their visual clustering is based on a piecewise
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model: the vicinity of polylines between two neighboring data
axes (or dimensions) of the parallel-coordinates plot governs
the visual clustering between those two data dimensions; other
pairs of neighboring data dimensions are clustered indepen-
dently. Therefore, high-dimensional data is not clustered on
a per-data-point level, but based on pairs of data dimensions.
The resulting visual clustering is thus sensitive to the order of
data dimensions in the parallel-coordinates plot.

Holten introduced edge bundling of tree layouts.12 Mc-
Donnell and Mueller14 built on this idea, developing a ge-
ometric, spline-based approach to computing visual bundling
that is similar to ours. However, McDonnell and Mueller’s
technique has a different objective: it targets illustrative
parallel-coordinates plots, using visual simplification and non-
photorealistic rendering techniques such as silhouette lines,
halos, and shadows. Therefore, details of the internal structure
of data points within clusters are not a focus of their research.
Moreover, cluster membership information is still based on
color coding, whereas our approach provides a complementary,
geometry-based visualization of clusters.

Our method improves upon the proximity-based parallel-
coordinates techniques of McDonnell and Mueller14 and Zhou
et al.13 in the following ways. First, we make better use of
the available screen space by re-distributing visually clustered
curves in a uniform way. Therefore, there is much less overlap
in the important parts of the plots—in the regions between
two data axes, where users identify correlation of data points.
In addition, overdraw and cluttering issues are reduced by
this redistribution. Second, we guarantee C1 continuity of
the curved lines across data axes, addressing the cross-over
problem.

There have been few previous papers providing user studies
on parallel coordinates. Jing15 compares polyline parallel
coordinates and scatterplots. Lanzenberger et al.29 investigate
the effectiveness of stardinates and parallel-coordinates plots
applied to an example data set with psychotherapeutic data.
Henley et al.30 evaluate scatterplots and parallel coordinates
for the task of comparing genomic sequences. Ten Caat and
Roerdink31 study a tiled parallel-coordinates technique for
visualizing time-varying multichannel EEG data. Johansson
et al.32 investigate the amount of noise that may be present
in parallel coordinates such that patterns can still be received.
Holten and van Wijk11 evaluate cluster identification perfor-
mance for curved and animated parallel coordinates, among
others. While Li and van Wijk15 examined the visualization
of correlation for linear parallel coordinates and Holten and
van Wijk11 the visualization of clusters, our user study aims at
evaluating the impact of bundling and curves to the judgment
of correlation and the detection of clusters.

Finally, there seems to be no literature concerning the
evaluation of bundling at all.

III. CURVE MODEL AND CURVE BUNDLING

In this section, we extend previous curve models7,11 to sup-
port bundling curves with the same cluster membership. The
extension is required because previous bundling techniques for
parallel coordinates either use a different curve model14 or a
different clustering model.13

The bundled curve model uses curve geometry to increase
the visibility of structure in the data across multiple axes,
reveal structure within clusters, and alleviate the cross-over
problem. At the same time, curve control points and tangents
are chosen to achieve good approximation to the original poly-
lines. The construction is designed to maintain the desirable
characteristics of polyline plots, in particular, their ability to
reveal correlations between variables. Finally, the parameters
of the model support exploration of the data by adjusting its
representation.

We use terminology and background knowledge from geo-
metric modeling, especially Bézier curves and the concept of
parametric (C) continuity.33

A. Overview

Given an input of N-dimensional data points with speci-
fied cluster membership, denote the parallel-coordinates axes
by X1,X2, . . . ,XN . We refer to these as the value axes to
distinguish them from the additional axes created for curve
modeling and bundling. Assume (without loss of generality)
that the value axes are uniformly distributed across the width
of the plot and separated by unit intervals. Given a data point
(P1,P2, . . . ,PN), its corresponding polyline is replaced by a
piecewise cubic Bézier curve with the following properties:
• The curve interpolates P1,P2, . . . ,PN at the value axes.
• The curve is C1 continuous throughout.
• Curves corresponding to data points that belong to the

same cluster are bundled between adjacent value axes.
This is accomplished by inserting a bundle axis midway
between the value axes and by appropriately positioning
the Bézier control points.

– To support curve bundling, curves within a given
cluster are adjusted by moving their control point
on the bundle axis toward the value of their cluster
centroid on the bundle axis.

– The cluster centroid is the projection of the N-
dimensional centroid on the plane defined by the
respective adjacent value axes, intersected with the
bundle axis.

– The use of curves also allows us to take better
advantage of the entire plot area. Specifically, the
cluster centroids can be arbitrarily distributed along
the bundle axis to alleviate the line clutter problem.

• Two parameters, α and β , adjust the shape of the Bézier
curves. The parameter α controls the extent the curve
approximates the original piecewise linear polyline, while
retaining C1 continuity; we call α the smoothness scale.
The parameter β dictates the bundling strength, how
tightly the curves within a cluster are pulled together.
It is worth noting that polyline-based parallel-coordinates
plots are simply a special case of our curve model, when
we set α = β = 0. Other curve models11 are obtained by
setting β = 0.

B. Curve continuity and smoothness scale

Consider two adjacent value axes Xi and Xi+1 with points
Pi and Pi+1 on them, respectively. Let the intersection of the
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Fig. 2. Construction of Bézier curve pieces between two adjacent value
axes Xi and Xi+1. We insert a bundle axis Vi midway between Xi and Xi+1,
as well as secondary control axes, Yi,1,Zi,1,Zi,2,Yi,2, placed at a distance α

away from their corresponding value or bundle axis. Adjacent Bézier pieces
share the same tangent line and intersections between the tangent lines, while
the value, bundle, or secondary control axes define the control points for the
Bézier curves. The control points for bi,1 are shown as blue dots. The control
points for bi,2 would be at corresponding locations on the right. The point
Ci is a cluster centroid which attracts the constructed Bézier curves in curve
bundling. As a result, while the original polyline passes through Qi, the curve
pieces now pass through Q′i.

line segment PiPi+1 with the bundle axis Vi (halfway between
Xi and Xi+1) be Qi (Figure 2). We shall convert the straight
line segment PiPi+1 into two cubic Bézier curve segments:
bi,1 between Xi and Vi and bi,2 between Vi and Xi+1. Due
to curve bundling, we may move Qi to Q′i along Vi as a
result of attraction by a cluster centroid Ci; this is explained
in Section III-C. The new point Q′i will serve as a common
control point for the two Bézier curve pieces bi,1 and bi,2,
which are constructed using Holten and van Wijk’s method11

by setting p0 = Pi and p = Q′i.

C. Curve bundling and bundling strength

The model can be extended to represent cluster membership
using bundling. Consider the set of polylines belonging to a
particular cluster C . For each such polyline, we record its
intersections with all the bundle axes. For a particular bundle
axis Vi, we can use the centroid Ci of the intersection points
corresponding to the polylines in cluster C as the common
control point shared by all the Bézier pieces (those which
replace polylines in cluster C ) adjacent to Vi. This will force
all the Bézier curves in the cluster to pass through the common
point Ci.

Strict curve bundling may hinder the viewer’s ability to
distinguish a positive correlation from a negative one. This

(a) (b) (c)

Fig. 3. Effect of bundling strength β on representing correlations. Column
(a) shows polyline plots of two variables with strong negative correlation, no
correlation, and strong positive correlation, respectively; Column (b) shows
the corresponding bundled curve plots with strict bundling, β = 1; Column
(c) shows bundled curve plots with β = 0.8.

is illustrated in Figure 3, where the first two columns show
the polyline plots (Figure 3a) and strictly bundled plots (Fig-
ure 3b) on two variables with strong positive correlation, no
correlation, and strong negative correlation. It is still possible
to detect the minor differences in the bundled plots, but not
as easily as for the polyline plots.

As a remedy, we introduce the bundling strength parameter
β . As shown in Figure 2, let the intersection between a straight
line segment and the bundle axis Vi be Qi. The bundling
strength controls the extent to which Qi will be pulled or
attracted toward the centroid Ci defined above. Currently, we
apply a linear weighting scheme: the new Q′i will be given by

Q′i = (1−β )Qi +βCi,

where 0 ≤ β ≤ 1. The choice β = 1 corresponds to strict
curve bundling, whereas β = 0 disables bundling altogether.
Any reasonable nonlinear weighting scheme, e.g., Gaussian
weights,

Q′i = (1−η)Qi +ηCi, where η = exp(−||Qi−Ci||2/σ
2),

for a suitably chosen width σ , is possible. The same range of
weighting scheme can be used for the centroid Ci.

In our current implementation, the same β is applied to
all instances of curve bundling. Obviously, one can gain
more fine-grained control by tuning β individually for specific
curves, bundle axes, or clusters; this would be at the expense
of introducing a more complex control interface.

By adjusting the bundling strength properly, we can detect
correlations in bundled curve plots just as easily as in poly-
line plots, even in the presence of clear curve bundling. As
shown in Figure 3c, with β = 0.8 more negatively correlated
data form denser, narrower crossing bands. A quantitative,
empirical comparison of the effectiveness of bundled curve
and polyline for discovering variable correlations is given in
the next section.
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D. Redistribution of cluster centroids

To take advantage of the entire available plot area and fur-
ther alleviate the line cluttering problem, the cluster centroids
can be sorted along each bundle axis and then redistributed
uniformly across the length of the bundle axis in an order-
preserving manner, where order is separately defined by the
centroid for every adjacent of axes. Figure 5 shows an example
of redistributed centroids. An immediate extension to uniform
distribution is to take into account the sizes of the clusters and
adjust the positioning of the cluster centroids accordingly.

A given analysis may or may not benefit from distributing
the centroids. Cluttered plots will have their clutter reduced
through distribution. On the other hand, for plots with greater
separation between clusters, plotting the centroids at their
projected values can provide useful information for the analyst.
We have used both methods in this paper: The user studies
and most example plots used distributed clusters, while the
example application in Section V does not use distributed
clusters.

IV. USER STUDY

To compare the effectiveness of polylines and bundled
curves, we performed a user study. Observers were asked
to estimate (a) correlations and (b) the number of clusters,
in datasets represented using polylines and bundled curves.
We expected that bundled curves would support correlation
estimation at least as well as polylines do, and that bundled
curves would support superior estimation of the number of
clusters.

A. Overview

In designing the experiment, we were subject to the con-
straint that we needed to estimate performance by analysts
skilled both in an underlying domain and at interpreting
parallel coordinates a given type, polyline or bundled curves.
Such users are not merely difficult to find, for the case of
bundled curves they do not yet exist. We addressed this
constraint with an approach often used for visualization user
studies. Specifically we:

1) Recruited participants who had little to no experience
with either form of parallel coordinates. We gave the
participants a short tutorial on strategies for estimating
correlations in parallel plots of each style. This created a
pool of participants equally skilled at reading both styles,
somewhere between novice and intermediate skill.

2) Used data sets generated solely according to specified
probability distributions, with no underlying semantics.
This ensured that no participant would be able to apply
domain knowledge to interpret the plots.

We used accuracy as the sole dependent measure and did
not record time. We argue that this untimed task matches
the context in which data analysts typically use parallel
coordinates, taking enough time to consider their data in
depth. This choice emphasized that participants take as long
as necessary to make their best estimate. It also minimized
fatigue by allowing participants to rest whenever they wished,

without regard for their score. This choice also eliminated the
potential confound of different participants adopting different
speed-accuracy tradeoffs, because accuracy was uniformly
emphasized.

Given the limited experience of the participants with the two
styles of plot, we do not believe that timing data would provide
any useful comparison between the styles. Comparative timing
data would only be informative with testers who were well-
experienced with the methods, working on data sets for which
they had domain expertise.

The curve styles were compared for two tasks, estimating
correlation and estimating number of clusters. The tasks
were performed in a fixed order for every participant, with
participants estimating correlation first. This design permits
more direct interpretation of the results because all participants
performed each task with a fixed level of prior experience. In
particular, their experience reading plots in the correlation task
would carry over to enhance their performance in the cluster
estimation task.

By contrast, a design that counterbalanced task order would
have split participants’ prior experience, increasing the vari-
ance and making the results harder to interpret. Given that a
counterbalanced design would only protect against the case
that doing the correlation estimate first would differentially
advantage one curve style, a prospect we consider highly un-
likely, we chose a fixed task order for its more straightforward
interpretation.

B. Design

The study design was single-factor, two-level, and within-
subjects. Observers viewed two data series. The first was
always the correlation estimation series, the second the cluster
estimation series. Within each series, line style was a blocked
factor, with all trials performed first in one line style, then the
other. Order of the two line styles was counterbalanced across
participants, with participants randomly assigned to the order.
Dependent measures, computed separately for each series,
were the Pearson correlation r between the actual dataset
correlation and the correlation estimated by participants, and
the Fleiss κ measure of agreement amongst participants.

Before running the full study, we ran a pilot study with five
participants to determine the best values of bundling strength
β and smoothness scale α . The values β = 0.8 and α = 1/6
achieved the best balance of correlation detection and cluster
visualization. These values were used for the bundled plots in
both series of trials.

1) Participants: A convenience sample of 14 participants
(9 men, 5 women, ages 23–37) was recruited from graduate
students in computing science and engineering science at
Simon Fraser University. Of these 14, 2 had previously used
polyline parallel coordinates, 8 had experience with some
form of information visualization but had never used parallel
coordinates, and 4 had never used any visualization software.
Volunteers were paid CDN$ 20.

2) Procedure for the session: Participants first answered
a brief series of questions assessing their level of experience
with information visualization and computers in general. They
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were next tested for any color deficiencies using a Web-
based test.34 All 14 participants had acceptable color vision.
They next read a tutorial on the basic principles of parallel
coordinates and their instantiation in polylines and bundled
curves. The tutorial defined correlation and gave examples of
positive and negative correlation using both line types.

Participants then began the first series of trials, in which
they estimated correlations. Immediately after completing that
series, participants began the second series, in which they
estimated the number of clusters in plots. After completing the
second series, they indicated which line style they preferred
and answered a short list of open-ended questions about their
experience during the study.

Participants were allowed to take as long as they wished on
each trial. Total time to complete the session varied widely,
from 50 to 110 minutes. Most participants completed the study
in less than 90 minutes.

C. First series: estimating correlations

In the correlation estimation trials, participants viewed a
series of datasets in 2D parallel coordinates (i.e., with two data
dimensions and two main parallel-coordinates axes), plotted
in either polylines or bundled curves. For each plot, the user
was asked to categorize the correlation as “strong negative
correlation”, “negative correlation”, “no correlation”, “positive
correlation”, or “strong positive correlation”.

1) Procedure: Before starting each line style, participants
read a short tutorial on estimating correlations in that style.
For polylines, the tutorial suggested looking for whether the
lines crossed or not, the distribution of line crossings (whether
only in the middle or distributed throughout the range), and
the overall shape of the plot. For bundled curves, the tutorial
suggested looking at the width of the middle band and the
overall shape of the plot. For each style, the tutorial presented
example plots of all seven degrees of correlation. To map the
seven values of actual correlation to the five categories of user
response, the tutorial recommended reporting z values of −1.0
and −0.5 as both “negatively correlated”, and similarly for
+0.5 and +1.0.

Participants began each line style with a training session.
The training session presented one plot of each correlation
level in the given style. Participants estimated the correlation
and were then told which answers would have been appropriate
for the dataset. Since there were seven levels of correlation but
only five levels of user response, two possible answers were
suggested for every example. After estimating all seven prac-
tice correlations, a page was displayed reminding participants
of the strategies for estimating correlation for this plot style.
Users pressed a button to start the first experimental trial.

Experimental trials had the same interface as the practice
trials, but provided no feedback about the actual correlation.
When the participant was satisfied with their estimate for the
current trial, they pressed a button to start the next.

2) Trial data: Three groups of seven datasets were gener-
ated, each with n = 40 data pairs. The pairs were generated
from normally distributed random series x and y, selected to
ensure that each set of 40 pairs had the given correlation

coefficient. Each group of datasets had exactly one set for
each level z = −1.5,−1.0,−0.5,0.0,+0.5,+1.0,+1.5, where
z is the Fisher transform of the correlation. These were the
same levels of correlation used in prior work.15 One group of
datasets was always used for the training phase. The remaining
14 datasets were each used twice, once for each line style.
Within each line style, order of datasets varied randomly for
each participant.

The bundled curve representation required two additional
parameters for each data point: the directions of the line
leaving each axis. These are not required for polyline plots,
where the direction of the line leaving an axis is independent
of the direction the line entered that axis from the other side.
However, the exit direction of bundled curves is affected by
the direction of the line entering from the other side, due to the
C1 continuity requirement. Pilot tests showed that if all curves
entered the axes at a constant horizontal direction, observers
used the consistent bending of curves at the axes as a cue to
estimate correlation. Since this cue would not occur in actual
use of bundled curves, which would in fact enter their axes at
varying angles, the direction at which each curve entered each
axis was randomly perturbed. This random perturbation likely
made correlation detection slightly more difficult for bundled
curves than it would be in practice, where entry to the axes
would vary but not be random.

Figure 4 illustrates example datasets with all seven different
correlation coefficients used for the experimental trials. The
top row shows polyline plots and the bottom row shows
bundled curve plots.

D. Second series: estimating clusters

In the cluster estimation trials, participants viewed a series
of clustered datasets in parallel coordinates ranging from
two to six dimensions, plotted in either polylines or bundled
curves. Clustering was indicated by color (for polyline plots)
and bundling (for bundled curve plots). Color Brewer35 was
used to define effective color maps for the polyline plots.
For each plot, the user was asked to estimate the number of
clusters.

1) Procedure: Before starting the series, participants read
a description of how clusters are represented in both line
styles. They then began working with either polyline plots
or bundled curve plots, depending upon which order had been
assigned. They practiced estimating the number of clusters in
three trial plots, with five, three, and eight clusters. Figure 5
shows typical examples of such plots. After each training trial,
the correct number of clusters was reported. After the three
training trials, a page redisplayed the three datasets and the
number of clusters in each. Users pressed a button to start the
first experimental trial.

Experimental trials had the same interface as the training
trials, but provided no feedback about the actual number
of clusters. After entering their estimate for the clusters,
participants pressed a button to move on to the next trial.
Once they had completed a series in one line style, they did
the training and experimental trials for the next style.
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Polylines

Curves

−1.5 −1.0 −0.5 0 +0.5 +1.0 +1.5
Fig. 4. One of the three sets of plots used in the correlation estimation series. The correlation, specified in Fisher z, is shown below each plot.

TABLE II
DATASETS FOR THE CLUSTER ESTIMATION SERIES (d IS THE NUMBER OF

DIMENSIONS, n IS THE NUMBER OF DATA POINTS)

Name d n Source

iris 4 150 Botany

netperf 6 179 Computer Science

htong 4 365 Earth Science

g40 2 40 Synthetic

g160 3 160 Synthetic

g200 5 200 Synthetic

2) Trial data: Trial datasets were created from three real-
world and three synthetic datasets (Table II). The real-world
datasets are popular test datasets, taken from the Xmdv Web
page.36 The synthetic datasets were generated by sampling
normally distributed series, selected to ensure the required
correlation across each dimension. Each of the 6 datasets was
then clustered by the k-means technique into k = 3,5,7, and 9
clusters. This series of 24 datasets was plotted using both line
styles. Within each series, the order of trials varied randomly
for each user.

E. Results

Figure 6 shows the distribution of participants’ responses
for the correlation estimation series. There was a strong
linear correlation between participants’ estimates and actual
correlation for polylines and bundled curves (both r = 0.90).
Considering the estimates for positive and negative corre-
lations separately, estimates for negative correlations were
stronger (r = 0.75 for polylines, r = 0.79 for bundled curves,
difference of the equivalent z-scores ∆z = 0.10) than for
positive correlations (r = 0.55 for polylines, r = 0.39 for
bundled curves, ∆z=−0.21). Agreement amongst participants
was moderate (κ = 0.43 for polylines, κ = 0.41 for bundled
curves). The results for polylines are comparable to those of
Li and van Wijk.15

For all comparisons the one-sided width of a 95% confi-
dence interval, which is entirely determined by the sample
size of 14, is ∆z95% = 0.59. All the ∆z scores presented above
were substantially within this bound, indicating that none of
the differences was statistically significant.

Figure 7 shows the distribution of participants’ responses for
the cluster estimation series. The overall correlation is strong
for both line styles (r = 0.92 for polylines, r = 0.96 for bundled
curves, ∆z = 0.36). The correlations were much stronger for
datasets with three or five clusters (r = 0.98 for both line

(a) Polyline plots (b) Curve plots

Fig. 6. Distribution of responses for the estimated correlations of 2D parallel
coordinates for polyline plots and bundled curve plots. Circle radius represents
the frequency with which participants estimated a correlation strength for each
actual correlation.

(a) Colored polyline plots (b) Bundled curve plots

Fig. 7. Distribution of responses for the estimated number of clusters
in parallel-coordinates plots in two line styles. Circle radius represents the
frequency with which participants estimated a dataset to have a given number
of clusters.

styles) than those with seven or nine clusters (r = 0.41 for
polylines, r = 0.68 for bundled curves, ∆z = 0.39). As with
the correlation estimation series, all ∆z values were substan-
tially below 0.59, indicating that none of the differences was
statistically significant.

Agreement amongst participants for cluster estimation was
slightly higher for bundled curves (κ = 0.65) than for polylines
(κ = 0.56). Each line style had higher agreement than their
corresponding levels for correlation estimation.

F. Discussion

The results for the two series of plots demonstrate im-
portant strengths of the bundled curve representation. The
correlation estimation series demonstrates that correlation is
as readily recognizable when parallel coordinates are rendered
in bundled curves as when rendered in polylines. This result
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Colored
polylines

Bundled
curves

3 5 7 9

Fig. 5. Representative plots used in the cluster estimation series: polyline plots with color coding of clusters (top row), and bundled curve plots (bottom
row). From left to right, the data sets are g160 (number of k-means clusters k = 3), iris (k = 5), g200 (k = 7), and netperf (k = 9).

is not obvious. Polyline plots provide a clear focal point
for estimating correlations: the width of the center region
is an excellent indicator of correlation, with strong negative
correlations producing a narrow center region and strong pos-
itive correlations producing a wide center region. In contrast,
bundled curve plots by definition draw the curves into one
or more narrow center regions. The width of those regions is
only mildly determined by the correlation of the dataset. Yet
bundled curves nonetheless provided sufficient cues (width of
center region, shape of lines) that participants could estimate
correlation from bundled curves as readily as from polylines.

The cluster counting series demonstrates that viewers could
identify clusters through their bundles. This is not surprising,
as bundling provides a strong cue of cluster identity. Partici-
pants likely determined cluster membership by looking at the
bundle axes, where bundling has its strongest effect. In effect,
a bundled curve plot uses different regions to geometrically
represent the spread and the clustering of the dataset. The
spread of values for a cluster is represented at the value axis.
The cluster identity of a datum is represented at the bundle
axis. In contrast, polylines provide no geometric representation
of cluster membership, so it must be represented using a dif-
ferent cue, color. Whereas polylines provide only correlation
information in the inter-axis regions, bundled curves use that
region to display correlation, number of clusters, and cluster
membership—a much more effective use of the space.

The geometric representation of cluster and distribution
must be simultaneous if the analyst is to compare the distribu-
tions of the different clusters. The bundling and C1 continuity
of bundled curves are essential for this comparison to occur,
for these features allow the viewer to be aware of both clusters
and distribution simultaneously. Bundling exploits the Gestalt
principle of proximity, visually grouping the lines of a cluster
in the middle of the plot. C1 continuity exploits the Gestalt
principle of continuity to maintain this visual grouping on
the value axes, where the distribution is represented. This
allows the viewer to compare the distributions of different
clusters. As a secondary benefit, the C1 continuity allows this
cluster identification to be maintained across value axes, the
membership reinforced at each bundle axis.

The same bundling strength was used for both the corre-
lation and the cluster counting series. This demonstrates that

each task can be achieved without sacrificing the other.

V. APPLICATION

The user study demonstrated that bundling is sufficient for
observers to distinguish clusters. We next complement the
study by presenting an example demonstrating that a bundled
parallel plot can represent the influence of clusters more
directly than its polyline counterpart. We assume a use case
where a clustering has been found and the analyst wishes to
explore an initial hypothesis of the predictive power of cluster
membership.

We use the car performance data of Ramos and Donoho,6 a
sample data set for the 1983 ASA Data Exposition. Altogether
the original data set includes eight fields, of which we analyse
relationships amongst seven: the number of cylinders, the
miles per gallon, the displacement, the horsepower, the weight,
the number of seconds to complete a quarter-mile from a
standing start, and the model year. A total of 406 cars are
in the dataset.

A natural basis for clustering this data is the number of
cylinders in each model’s engine. Clustering the data this way
produces five clusters. Two clusters, the seven cars with either
three or five cylinders, are so small that they increased the plot
complexity with no gain in explanatory power, so we deleted
them from the plot. The remaining 399 cars were grouped into
clusters for four, six, or eight cylinders. A reasonable initial
hypothesis is that the number of cylinders has the following
correlations to the other fields:
• More cylinders should reduce the miles per gallon (neg-

ative correlation).
• More cylinders should increase displacement (positive

correlation).
• More cylinders should increase horsepower (positive cor-

relation).
• More cylinders should increase weight (positive correla-

tion).
• More cylinders should decrease the number of seconds

to accelerate over a quarter-mile (negative correlation).
For model year, there was no strong a priori assumption for

any correlation with the other fields. We chose to plot older
cars at the top, as there was a mild likelihood that they would
be less efficient than newer models.
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Figure 1 shows the data plotted in both polyline and
bundled parallel coordinates. The direction of each value axis
is selected so that the values hypothesized to correlate most
directly to the maximum number of cylinders are displayed at
the top (value axes with expected negative correlations have
their smaller values at the top). At each bundle axis, curves
within a cluster are pulled to the projections of their centroids.

Comparing the between-axes region in the two plots, the
polyline version (Figure 1a) features a lot of geometry that
engages the eye but provides no useful information. Between
every pair of value axes many lines overlap and at each axis
there are many abrupt changes of direction.

By contrast, in the between-axes region of the bundled
version (Figure 1b) the geometry is informative. The projection
of each cluster’s centroid is indicated on the bundle axes. It is
possible to immediately assess both the relative order and the
magnitude of the difference between the projected centroids
by number of cylinders.

Comparing the two plots at the value axes, for the polyline
plot it is impossible to compare the ranges of different clusters
for most variables because it is too difficult to associate a line
segment with its cluster. By contrast, in the bundled plot it is
easy to trace an individual curve to its cluster bundle, making
it easy to compare the cluster ranges on a given axis. This
includes detecting outliers within clusters, such as the most
powerful car in terms of horse power within the six cylinder
group. From the polyline plot, the correspondence to its cluster
could not be determined without color or additional axes.
Consequently, a glance at a value axis is sufficient to determine
the predictive power of the clustering on that variable. For
the given cars, the number of cylinders strongly predicts
displacement, horsepower, and weight. For consumption and
acceleration however, the number of cylinders only predicts
the extreme values for each cluster.

The polyline plot is slightly more informative about the
relationship between model year and acceleration (simply
because they were plotted as adjacent axes). Older cars have
a wider range of acceleration than more recent cars, with the
quickest cars all coming from the earliest years. The bundled
plot obscures the relationship of model year with any other
axis because the bundle points make it impossible to track the
model year to any adjacent axis.

Overall, the bundled representation is clearer because it
separates distinct components of the data into distinct regions
of the plot: Cluster membership is displayed on the bundle
axes, while the range of individual points within the cluster is
displayed on the value axes. The curves allow straightforward
correlation of individual values and their membership. By
contrast, the polyline representation gives equal prominence
to changes within clusters and changes of the clusters as a
group, making it impossible to separate them visually.

This example use case assumed that the analyst had an a
priori hypothesis of the correlations between cluster mem-
bership and other variables. We suggest that this is the most
common and important case because it represents the goal of
most other use cases. For example, where there is no prior
hypothesis, interactive bundled plots would allow the analyst
to consider alternative relationships between the clusters and

other variables by varying the direction and order of axes,
together with the bundling parameters α and β . The clear
geometric separation afforded by bundling would likely allow
the analyst to converge on the best explanation far more
quickly than with polyline plots.

For demonstration purposes, we also provide a video of
the application scenario as supplemental material. The car
data analysis is conducted with a prototype tool that allows
to interactively adjust the smoothing and bundling parame-
ters. In conjunction with standard interaction techniques such
as flipping and reordering axes, the video demonstrates the
strengths of bundled parallel coordinate plots in an interactive
environment.

A. Bundles aid interpreting clusters

The purpose of bundling is to highlight the cluster mem-
bership of individual points. Bundling is not itself a technique
for determining clusters. Rather, it is used after the analyst
has already derived clusters, whether from a priori domain
knowledge or statistical clustering methods. Bundling aids in
the interpretation of clusters in several ways.

At the local level of analysis of a single axis, bundling
makes it easier to see the spread of values for one cluster and to
compare spreads for several clusters. In the car example above,
much of the analysis of the influence of engine cylinders was
done this way. Bundling also helps compare the relative order
of clusters along one axis or along two adjacent axes. These
local analyses become more powerful when combined with
interactive selection of the direction of each axis, as shown in
the demonstration video.

At the global level of analyzing clusters across all axes,
bundling is only partially useful. When the relative order of
the clusters remains the same across all or most axes (perhaps
after flipping some axes), clustering is sufficient to differentiate
the clusters without recourse to additional methods such as
colour. Figure 1 demonstrates this case for the car example.

When the relative order of clusters changes from axis to
axis, however, as seen in the bundled iris and netperf plots in
Figure 5, bundling is insufficient to convey the global picture
of where clusters fall on every axis. The zig-zags introduced
by displaing the bundling points might even make it harder for
the eye to track clusters. In these cases, bundling may have
to be supplemented by color to convey the global flow of
each cluster. Note that color by itself may not be particularly
informative about the global flow of clusters, as demonstrated
by the colored polyline plots in Figure 5.

Overall, we suggest that bundling is a powerful addition to
the representation of clusters in parallel coordinates, sufficient
to support many kinds of local analyses and some cases of
global analysis, while offering powerful synergies with colour
for complex global relationships.

VI. CONCLUSION AND FUTURE WORK

Bundled curve parallel-coordinates plots are designed to
alleviate some longstanding limitations of traditional polyline
plots and to geometrically reveal cluster structures specified
for the input data. Bundled curve plots are constructed from
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piecewise cubic Bézier curves with control points judiciously
selected to ensure C1 continuity; this can alleviate the well-
known cross-over problems for polyline plots without any
additional visual aid beyond curve geometry. Cluster structures
in the data are emphasized by curve bundling, pulling curves
belonging to the same cluster toward their cluster centroid. The
greatest advantage of bundling is that a wide range of views
from abstract high-level to detailed low-level representations
are easily obtained by tuning the bundling strength. The
cluster centroids can further be uniformly distributed to take
advantage of the whole plot area and reduce line cluttering.
For large datasets, line density plots for each cluster can be
employed to avoid the potential over-plotting problem. As
traditional parallel coordinates are a special case of our tech-
nique, many established extensions and interaction techniques
such as brushing-and-linking can be applied without further
enhancements.

The user study conducted in this work supports the fol-
lowing conclusions: Firstly, curve bundling is effective in
displaying clustering information purely based on geometry.
As a consequence, the color channel can be used for other
attributes or, in the case of complex cluster patterns, be
used in concert with color. Secondly, with a properly chosen
bundling strength, bundled curve plots retain the same strength
as polyline plots in revealing correlations between visualized
variables. Hence one of the core aspects of analysis using
parallel coordinates carries over using bundling.

In future work, we plan to compare bundled curve plots
to polylines and other curve-based approaches, as well as
other approaches to visualizing cluster information. The high
effectiveness of curved plots compared with polyline plots
was not obvious. The results of our user study might trig-
ger further perceptual investigations of variants of parallel-
coordinates plots. It could be the case that other forms of
parallel-coordinates plots might be even more effective than
bundled curves—not only for cluster visualization but other
applications.

Qualitative improvements of this work are also possible.
One problem of interest is the automatic determination of the
visualization parameters, α and β , as well as the arrangement
of cluster centroids, guided by optimization criteria. For exam-
ple, such criteria may be related to a measure of line cluttering
and curve smoothness. It is also interesting to consider com-
bining color mapping and curve density plots selectively in
order to further improve the high-level visualization of clusters
and low-level investigation of data items within each cluster.

This research is supported in part by the NSERC Discovery
Grant of Zhang and a MITACS research grant. Special thanks
to Jing Li and Jarke J. van Wijk for sharing the results of their
user study.15
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