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Figure 1: High (top) and low entropy (bottom) viewpoints of ribbon representations of 4 protein structural domains used as test structures in
our evaluation. Every domain is a member of 1 of 4 classes in the top level of the CATH hierarchy (from left to right: alpha and beta, mainly
beta, few secondary structures, and mainly alpha).

Abstract
While many measures of viewpoint goodness have been proposed in computer graphics, none have been evaluated for ribbon
representations of protein secondary structure. To fill this gap, we conducted a user study on Amazon’s Mechanical Turk
platform, collecting human viewpoint preferences from 65 participants for 4 representative superfamilies of protein domains. In
particular, we evaluated viewpoint entropy, which was previously shown to be a good predictor for human viewpoint preference
of other, mostly non-abstract objects. In a second study, we asked 7 experts in molecular biology to find the best viewpoint of
the same protein domains and compared their choices with viewpoint entropy.
Our results indicate that viewpoint entropy overall is a significant predictor of human viewpoint preference for ribbon repre-
sentations of protein secondary structure. However, the accuracy depends on the type and composition of the structure: while
most participants agree on good viewpoints for structures with mainly beta sheets, viewpoint preference varies considerably for
complex arrangements of alpha helices. Finally, experts tend to choose viewpoints of both low and high viewpoint entropy to
emphasize different aspects of the respective structure.
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1. Introduction

Structural biology has produced over 100,000 experimentally-
determined macromolecular structures at near atomic resolution.
These data give invaluable insight into the molecular machinery of
life; however, using these data effectively is challenging, even for
experts. A very common task involves choosing optimal 3D view-
points for these complex structures: This task is done by student
and expert users alike, and for a wide range of tasks, for exam-
ple, in creating figures for scientific publication, or animations for
public communication [JH14]. Currently, this task is almost always
done manually; here, we evaluate viewpoint entropy as a strategy
for selecting viewpoints automatically.

Protein structures are typically defined by their amino acid se-
quence (primary structure), the presence of local features known
as alpha helices and beta sheets (secondary structure), and the
overall spatial layout (tertiary structure). Ranges of residues with-
out secondary structure are often referred to as coils. There are a
multitude of visualization techniques available for macromolecules
(see [KKL∗15] for a recent overview), each conveying different as-
pects of the 3D structure of a molecule. Common examples are
ball-and-stick representations of individual atoms and bonds, sur-
face representations, or secondary structure representations such as
ribbons. In this work, we focus on the latter, as secondary structure
visualizations are frequently used to obtain the overall shape of a
macromolecule, and many web-resources such as the Protein Data
Bank (PDB) [BWF∗00] use ribbon representations as the default
view. In ribbon representations, the type of secondary structure of
a residue is typically mapped to both geometry and color. In this
article, we use a blue color for helices, yellow for sheets, and green
for coils (see Figure 1 for an example).

While structural biologists typically use sophisticated software
packages for visualizations of macromolecules [OGF∗10], the ad-
vent of web-based molecular graphics [MKK∗14] now allows any-
one interested in molecular structures (including the general pub-
lic, teachers and students, molecular biologist, or bioinformati-
cians) to access and visually explore any protein deposited in pub-
lic databases such as the PDB or Aquaria [OSK∗15]. Considering
the complexity of interacting with 3D objects in general [KHC∗08]
and with complex macromolecules in particular, we anticipate that
pre-determined viewpoints would be of great benefit to experts
and naïve users alike. Providing sensible default views as a start-
ing point for interactive exploration or computing camera paths for
periodic orbiting are example applications of automatic viewpoint
detection.

We focus on the evaluation of one particular measure to quan-
tify the goodness of a viewpoint: Viewpoint entropy [VFSH01] is
an established, appearance-based measurement of viewpoint good-
ness based on information theory. It can be applied to any three-
dimensional scene with known geometry and has been proposed to
be useful with molecular structures as well [VFSL02, DCMP10].
However, no formal evaluation has been conducted yet to show the
extent to which viewpoint entropy matches human preference of
viewpoints for ribbon representations of protein structures.

Hence, we ran 2 studies to compare human preference with view-
point entropy for 4 representative molecular structures: first, we re-
cruited individuals without specific knowledge about proteins via

Amazon’s Mechanical Turk (MTurk) platform to build a single-
attribute model of viewpoint preference. To train this model, we
carefully selected a set of macromolecular structures that represents
a large fraction of structurally similar domains, which are func-
tional sub-units of proteins. We anticipate this set of structures will
serve future investigations as benchmark models. In an additional
study, we collected preferred viewpoints of the same set of struc-
tures from experts in molecular biology, and compared those to the
data of the non-experts. The results of both groups suggest that
viewpoint entropy is significantly better than random at predicting
human preference overall, with varying performance.

In summary, the contributions of this paper are (i) a set of bench-
mark domains that represent 7,819 entries in the PDB, (ii) a quan-
titative evaluation of viewpoint entropy for non-experts, and (iii) a
qualitative evaluation of viewpoint preference for experts to guide
future research.

2. Related Work

Viewpoint goodness has been investigated extensively in computer
graphics [SLF∗11] and volume visualization [MNTP07, TFTN05].
While much work has been done to find models of viewpoint good-
ness for real-world objects, only little is known as to which extent
these models match the human preference of complex shapes such
as molecules. Here, we focus on a single type of object, namely
ribbon representations of protein secondary structure. We therefore
report related work relevant for the evaluation of viewpoint good-
ness for macromolecules in this section and refer the reader to the
work of Secord et al. [SLF∗11] for an overview of the methods that
have been developed for other types of objects.

Viewpoint entropy was introduced by Vázquez et al. [VFSH01]
for general scenes and has been applied to image-based render-
ing [VFSH03] and macromolecules [VFSL02, VFSL06] in sub-
sequent work. While Vázquez et al. applied viewpoint entropy to
ball-and-stick representations of molecules, we use our notion of
features for the underlying probability distribution and provide a
quantitative analysis of the performance of viewpoint entropy as a
predictor of viewpoint goodness for ribbon representations.

Doulamis et al. [DCMP10] proposed a personalized viewpoint
selection for atom-based representations of macromolecules and
trained a non-linear classifier with input from domain experts.
While their approach is similar to ours in that a model is fitted to
human preference data, our model is aimed at being specific for
ribbon representations, while performing well for non-experts in
structures. Furthermore, Doulamis et al. did not provide an evalua-
tion of their approach.

Takahashi et al. [TFTN05] proposed viewpoint entropy to locate
feature-driven viewpoints in a volume-rendering context. While we
use a similar approach to compute viewpoint entropy for features
of an object, our definition of features is different and can not be
applied to volumes. Also, Takahashi et al. did not conduct a quan-
titative evaluation of their approach.

Ji and Shen [JS06] based their selection of single and multi-
ple viewpoints on analyzing the opacity, color and curvature of the
viewed object. While they get promising results on using this tech-
nique on different types of objects (real-world and abstract), the
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parameters they used to select a good viewpoint would not be suit-
able to apply to protein structures due to their unique features and
complexity.

Some molecular visualization packages [Sch10] implement the
“best” view by providing a simple principal-components view,
which is typically computed from the 3D coordinates of Cα atoms.
However, such views do not take into account the visibility of
residues and thus may hide important features of a structure. In con-
trast to such object-space methods, image-based measures of view-
point goodness evaluate the image of a molecular structure after
projecting it to 2D. While such an approach loses the 3D context of
the structure, such appearance-based methods have the advantage
of measuring exactly what the viewer perceives.

Our methodology is based on the meta-study conducted by Sec-
ord et al. [SLF∗11]. In their work, a set of 14 attributes measuring
viewpoint goodness are investigated towards their contribution in
predicting human viewpoint preference. While Secord et al. give
recommendations for which attributes perform well when used as
a single predictor and in combination with others, their model was
not trained with nor tested on protein structures. In contrast, the
training data set of Secord et al. consisted of 14 real-world objects
and only two abstract objects. Considering the vast amount of pos-
sible 3D shapes, the number of known structures [PaHS∗15] is a
rather small subset of these shapes, which eventually allows us to
design specialized, but well-performing models of viewpoint good-
ness. Here, we investigate the feasibility of measuring viewpoint
goodness for these complex shapes and hence focus on evaluating
a single, image-based attribute only.

We collected human preference data using the MTurk platform.
Over the last years, MTurk has become increasingly popular for
perception studies in a variety of disciplines; examples include
computer graphics [SLF∗11], human-computer interaction [HB10],
and information visualization [CSR∗14, DBH14]. MTurk facili-
tates online user studies by providing ‘requesters’ with an inter-
face to design human-intelligence-tasks (HITs), which can then be
completed by individuals signed up as ‘workers’. For every HIT
completed and approved, Amazon transfers a pre-defined and pre-
paid micro-payment to the worker. While this service supports re-
searchers in recruiting participants and collecting results in a timely
manner, it does not allow for the same amount of monitoring as ex-
periments conducted in a controlled environment.

3. Viewpoint Entropy

In this work, we evaluate viewpoints of protein secondary struc-
ture representations. We hypothesize that good viewpoints of such
representations maximize both the number and the area of visible
distinct secondary structure elements, i.e. we seek to maximize the
information conveyed by alpha helices, beta sheets and coils. Be-
low, we summarize how this can be achieved using viewpoint en-
tropy.

The basic idea behind viewpoint entropy is to maximize the in-
formation that can be perceived from a given scene across all can-
didate viewpoints. Viewpoint entropy is based on the Shannon En-

tropy of a discrete random variable X :

H(X) =−
n

∑
i=1

pi log2 pi,

where pi = P(X = ai) is the probability of the event ai. By using
the relative area of projected faces of a scene as probability distri-
bution, Vázquez et al. [VFSL02] define the viewpoint entropy of a
scene S from a viewpoint v as

IP(v) =−
Nb

∑
i=1

Ai

4π
log2

Ai

4π
,

where Ai is the projected area of face i, Nb is the number of faces
and 4π is the solid angle of the sphere (of possible camera posi-
tions). Using orthogonal projection and assuming that we are op-
erating on the projected image of the scene with N pixels, this can
further be simplified to

IF (v) =−
N f

∑
i=1

N pi

N
log2

N pi

N
,

where N f is the number of objects or features and N pi is the number
of projected pixels of feature i, and i = 0 denotes the background
of the image. For convenience, we use the normalized viewpoint
entropy as proposed by Takahashi et al. [TFTN05]:

I(v) =− 1
log2(N f +1)

IF (v). (1)

In contrast to previous work where viewpoint entropy was ap-
plied to faces [VFSH01] or atoms and bonds [VFSL02], we use
residue features instead for the underlying probability distribution.
We define a residue feature as a set of one or more consecutive
amino acids carrying a common semantic meaning, and count all
pixels of a feature in the projected image to determine N pi. In this
work, we focus on secondary structure as a feature, such that N f
is the number of distinct secondary structure elements and the re-
spective N pi are the number of pixels per distinct alpha helix, beta
sheet or coil.

To compute I(v), we assign a unique color to every distinct sec-
ondary structure element of a ribbon representation and then use an
image-based pipeline to compute the number of pixels N pi for ev-
ery distinct color in the resulting image, rendered from viewpoint
v.

4. Evaluation

In order to evaluate viewpoint entropy for secondary structure fea-
tures, we conducted a study on Amazon’s Mechanical Turk plat-
form. We deliberately decided to recruit non-experts in structural
biology to ensure that our results are valid for the general public.
This is necessary as users of molecular visualization today cannot
only be found in all areas of the life sciences (e.g. medical prac-
titioners, biomedical animators, molecular biologists, and bioin-
formaticians), but also in the general public (e.g. in outreach and
education). We therefore did not require participants to have any
knowledge about protein structures and thus did not ask to perform
a qualification test to participate in our study, except for collecting
user agreement on the participation information.
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We were interested in investigating the correlation between
viewpoint entropy and the observed goodness of a viewpoint for
a representative set of structures and viewpoints. This can be
achieved by collecting human viewpoint preference for every struc-
ture (as the observed goodness) and by comparing it to the good-
ness as measured by our model. In line with the work of Secord et
al. [SLF∗11], we employed a two-alternative forced choice (2AFC)
methodology to collect human preference data. This protocol has
been shown to be effective with respect to the time and effort re-
quired by the subjects, while delivering good results in terms of
statistical power [MTM12]. In this type of experiment, participants
are presented with two stimuli and are asked to make a choice be-
tween them. As this task is straight-forward, 2AFC experiments
were found to produce more accurate results than alternative rating
models [MTM12].

In our study, a trial consisted of selecting one image out of two in
a side-by-side layout, each of which showed a ribbon representation
of the same structure but from a different viewpoint. Inspired by
previous studies on viewpoint goodness [BTB99, SLF∗11], we in-
structed participants to choose the view that “best reveals the shape
of the object” without imposing a time-limit. Structures were col-
ored according to the Aquaria [OSK∗15] coloring scheme.

To avoid participant duplication, trials were submitted to MTurk
in batches of HITs (one batch per structure). Hence, participants
were allowed to accept each trial exactly once and were able to
choose voluntarily how many trials they want to complete.

4.1. Pilot Study

In order to test our setup and estimate the time a participant re-
quires to complete a trial, we conducted a full 2AFC experiment as
a pilot study on MTurk using a within-subjects design: for 10 view-
points of the domain with CATH ID 2bg9B01 of type mainly beta
(see Figure 2), we showed every combination of dissimilar pairs of
viewpoints twice to 13 naïve participants: After presenting 90 pairs
in random order, we shuffled the order of pairs, swapped sides (such
that every image appears exactly once on the left and once on the
right side), and showed all pairs again to the same participant. With
an initial assumption that every choice takes an approximately of
10 seconds to complete, we set the reward per trial to USD 0.02,
based on the US minimum wage of USD 8.00/hour.

As every pair of images was shown to a participant twice, we can
compute the consistency at which one viewpoint was preferred over
the other for every structure, pair of viewpoints and participant. If
the same image was picked twice by a participant, the consistency
for that participant and pair is c = 1, else it is c = 0. We can then
use the number of consistent votes to compute the probability of
obtaining such a result purely by chance using a binomial test and
filter for participants that appear to be choosing images randomly
at the desired level of confidence (e.g. α = 0.05). This strategy
allowed us to filter for careless subjects while keeping those cases
where participants could not make up their mind as the two views
appeared to reveal the shape of the structure equally well.

From 13 participants, we identified 3 as careless subjects (α =
0.05) and obtained votes from 10 participants in 830 trials (note

that not all participants completed all trials). With every view be-
ing compared to every other view, we can then use the number of
votes per view vi divided by the total number of votes for all pairs
containing vi as an approximation of the probability P(vi) that view
vi is preferred over any other view, and rank all viewpoints accord-
ingly from most preferred to least preferred. Figure 2 (left) com-
pares these ranks with a ranking from highest to lowest viewpoint
entropy. Overall, there is a clear positive correlation between ranks,
and 4 out of 10 views are on the same rank (including ranks number
1 and 10). Hence, for this structure, naïve observers prefer views of
high viewpoint entropy over low viewpoint entropy views. The plot
on the right of Figure 2 further illustrates the relation of viewpoint
entropy I(vi) with P(vi). The best-fit logistic regression curve em-
phasizes the expected sigmoid shape of the correlation [SLF∗11].

For this structure and the set of 10 viewpoints, we obtained an
average consistency of ≈ 81%, indicating that for 81% of pairwise
comparisons, a winner could be determined. The median comple-
tion time was 10 seconds as anticipated.

4.2. Main Study

After finishing the pilot study, we conducted a larger study on
MTurk using 4 benchmark structures, 100 viewpoints and 104 par-
ticipants. In this section, we describe our approach to sample these
structures and viewpoints, respectively.

4.2.1. Sampling Structures

As our aim is to evaluate the performance of viewpoint entropy to
predict good viewpoints for protein secondary structure, we need
to find a set of benchmark structures that are as diverse as possible
with respect to their composition of secondary structure elements
and at the same time represent as many proteins as possible.

Compared to the huge number of real-world shapes, the pool of
available protein structures is rather small: The protein databank
(PDB) [BWF∗00] currently holds only slightly more than 100,000
entries, many of which consist of arrangements of domains, which
form the building blocks of molecular evolution to create proteins
with different functions. Due to the complexity of molecular struc-
tures, our overall strategy is to test the feasibility of viewpoint se-
lection algorithms on a small set of the most common domain archi-
tectures in this work, and leave the investigation of more complex,
composite models for future work.

The CATH database [SCD∗13] provides a hierarchical classifi-
cation of 26 million domains into 2,738 superfamilies, 1,375 folds,
40 architectures and 4 classes, based on the (i) secondary structure
composition, (ii) overall shape, (iii) connectivity and (iv) homol-
ogy of secondary structure elements. For this study, we were par-
ticularly interested in the first level, as it summarizes the protein
structural universe into 4 high-level classes with similar secondary
structure compositions: (i) mainly alpha, (ii) mainly beta, (iii) al-
pha and beta, and (iv) few secondary structures.

For every class, we used the first domain of the superfamily (of
domains) that represents the largest fraction of domains in the re-
spective class. For example, the domain with ID 1a4iB01 is a
member of the superfamily with ID 3.40.50.720 which repre-
sents a total of 6,092 domains of similar shape in class 3 (alpha and
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Figure 2: Ranking of viewpoints by human preference (naïve) and by viewpoint entropy (left) for the domain with CATH ID 2bg9B01 of
class mainly beta. Overall, a clear positive correlation emerges from the plot. In particular, the most and the least preferred views agree with
those of highest (center, top) and lowest viewpoint entropy (center, bottom). The correlation of viewpoint entropy I(vi) with the fraction of
times vi was preferred over any other view (right) reveals a sigmoid shape. The best-fit logistic regression curve is shown in blue.

beta). No other superfamily represents more domains in the same
class.

CATH id Class #SS
1aym400 few secondary structures 6
1axiB01 mainly beta 17
1a4iB01 alpha & beta 25
1kobA02 mainly alpha 34

Table 1: The 4 domains used for evaluation in this work, sorted by
increasing complexity (in terms of #SS, the number of distinct sec-
ondary structure elements [#SS equals N f −1 to exclude the back-
ground feature]).

Using this strategy, we chose the domains with CATH IDs
1a4iB01 (alpha and beta), 1axiB01 (mainly beta), 1kobA02
(mainly alpha) and 1aym400 (few secondary structures), see Ta-
ble 1 and Figure 1. Altogether, the respective superfamilies repre-
sent 23,226 domains and 7,819 unique entries from the PDB.

4.2.2. Sampling Viewpoints

2AFC experiments come at the cost of requiring many trials: Ide-
ally, every stimulus is compared to every other, such that on the
order of N2 trials are required for N conditions (here: viewpoints).
While this number can be further reduced to N log2 N using sorting
algorithms [SF01], it quickly becomes impractical for our purpose,
as N needs to be large in order to get a good coverage of the viewing
sphere. In addition to that, the number of trials per subject should
be limited to avoid fatigue and frustration.

In alignment with previous work on real-world objects [SLF∗11]

and to combine the simplicity of the task (which is particularly im-
portant for non-experts in protein structures) with a good coverage
of viewpoints, we resorted to sampling random pairs of views in-
stead of conducting an all-versus-all comparison as in Section 4.1.
Ideally, we would like to sample the sphere of possible camera po-
sitions randomly, but uniformly spaced. To this end, we sampled
100 viewpoints using Hammersley sequences [WLH97], as such
low-discrepancy sequences have the property to achieve a more
uniformly spaced distribution of points than pseudorandom num-
bers. To obtain pairs of views, we randomly assigned 2 viewpoints
to a pair without replacement, thus obtaining a total of 50 pairs of
viewpoints per structure. The caveat of this approach is that every
viewpoint is compared to a single other viewpoint, such that a rank-
ing of viewpoint goodness as obtained in the pilot study cannot be
directly extracted from the resulting data. Instead, distances in im-
age attributes are used to model the odds of view vi being preferred
over view v j for any given pair i, j.

After sampling viewpoints, we determined the orientation of the
camera as follows: First, we computed the principal components of
the spatial coordinates of all backbone Cα atoms in the structure.
As a result, we obtained 3 linearly independent vectors, where the
first indicates the direction of the largest possible variability, the
second indicates the largest variability in an orthogonal direction to
the first, and so on. Of these principal components, we then used the
first to define the up-vector of the structure in object space. After
rotating the camera to a viewpoint, we then aligned the camera up-
vector to the model up-vector before creating the final image.

As in the pilot study, we showed every pair of views twice to ev-
ery participant. This resulted in a maximum of 100 trials available
for every participant and structure.
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Model σ Standard Error z-value Fitness p-value Average Consistency
1aym400 0.98 0.22 4.55 0.64 < 0.01 74%
1axiB01 0.96 0.2 4.86 0.88 < 0.01 73%
1a4iB01 0.67 0.18 3.63 0.71 < 0.01 66%
1kobA02 0.44 0.16 2.82 0.60 < 0.01 63%
Full 0.77 0.01 59.44 0.71 < 0.01 69%

Table 2: Coefficients (σ ), standard error, z-value, relative fitness, and p-values for the fitted Bradley-Terry model for the full data set and
individual structures. The p-value was computed on a χ2 distribution with degrees of freedom equal to the difference in degrees of freedom
of the null model and the test model. All models reduce deviance significantly (p < 0.01) from the null model, indicating that viewpoint
entropy is a significant predictor for the preference of viewpoints for naïve users and across all structures.

5. Results

After filtering for careless subjects using the same approach as for
the pilot study, we obtained a total of 10,382 choices expressed
by 65 participants. Thus, we had to discard 1,618 trials from 39
subjects, which constitutes approximately 13% of all votes.

On average, each of these participants completed approximately
160 trials, indicating that most subjects completed the full set of
image pairs only for a single structure. While the mean completion
time per trial was 46.68 seconds, the median was only 7 seconds.
Hence some participants may have had a long break during a trial,
but most trials were completed in less than 10 seconds. The differ-
ence in average consistency is very striking: Here, the fraction of
pairs for which participants were indecisive increases with the com-
plexity of the structure: For the most complex structure 1kobA02
with the largest number of secondary structure elements, consis-
tency was as low as 63%, as opposed to an average consistency of
74% for 1aym400.

5.1. Modelling Viewpoint Preference

In order to evaluate our data, we need a model that predicts the
probability of a viewpoint v1 to be chosen over any other viewpoint
v2, given the respective viewpoint entropies I(v1) and I(v2). The
Bradley-Terry model [BT52] derives the probability P(vi,v j) that
a participant chooses vi over v j from the log-odds ratio of their
viewpoint entropy:

logit(P(vi,v j)) = I(vi)− I(v j), (2)

where I(vi) = log(oi) and oi
o j

are the odds of vi ‘beating’ v j. Then,
P(vi,v j) can be expressed using the inverse logit function as:

P(vi,v j) =
1

1+ e−σ(I(vi)−I(v j))
. (3)

This model can now be fitted to our observed data using
maximum-likelihood estimation. In this approach, the likelihood
that the observed data can be explained by the model is maxi-
mized. We fitted one model each to the individual domains and
to the results of all assignments individually. The results are listed
in Table 2 along with the standard error and z-value. For our data,
all coefficients (σ ) were found to be significantly different from 0
(p < 0.01). As the response variable in the Bradley-Terry model is
expressed as log-odds, coefficients can be interpreted as the log-
arithm of the increase of odds for every increase in the differ-
ence of viewpoint entropy. For example, an increase of 1 unit in
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Figure 3: The consistency at which participants picked a viewpoint
was lowest for 1kobA02, indicating that participants were most
indecisive for that structure.

the difference in viewpoint entropy for 2 given views vi and v j in
the full model, the odds of vi being preferred over v j increase by
e0.77 ≈ 2.16 times.

In logistic regression, the quality of a model is typically ex-
pressed as the deviance to a fully saturated model, i.e. a model
with perfect fit. The deviance is computed from the likelihood of
the data to be explained by a model. A good model, i.e. a model
that does not deviate substantially from the saturated model, re-
sults in a small value for residual deviance. The null-model, in con-
trast, is a model with only the intercept, and the null-deviance is
the difference of the null-model to the saturated model. As a satu-
rated model is typically not available, the significance of a model
with at least one predictor can instead be tested with a χ2

n−m-test on
the difference between the residual deviance and the null deviance.
Significant values indicate good model fit and little unexplained
variance. However, as the absolute value of deviance is difficult to
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Figure 4: The difference I(vi)− I(v j) in viewpoint entropy for viewpoints vi and v j (in units of standard deviation), plotted against the
fraction of times vi was chosen over v j for the full model (left) and all individual test structures (right). In these plots, a point denotes a single
viewpoint and the curves show the best-fit logistic regression.

interpret, we only report the relative fitness as the log-likelihood of
a model, scaled to the range of log-likelihoods between the null-
model and the saturated model [SLF∗11]. The relative fitness is a
value between 0 and 1, where 0 is the fitness of the null-model and
1 denotes the fitness of the saturated model.

As can be seen from Table 2 and Figure 4, viewpoint entropy is
a significant predictor of human preference for viewpoints of our
test structures for the full model (including all structures), as well
as for all structures individually. However, the fitness is highest for
1axiB01 and lowest for 1kobA02, showing that the quality of
the model fit depends on the structure. Overall, these results sug-
gest that viewpoint entropy can be useful in predicting viewpoint
preference for ribbon representations of protein structures.

6. Validation

In order to validate our results, we asked experts in molecular bi-
ology to provide their preferred viewpoint of the domains used in
Section 4, and compared the results to viewpoint entropy. To this
end, we recruited 12 participants with a background in molecular
biology to view the same 4 structures as were used in the main
study. Each participant viewed every structure in PyMOL [Sch10]
starting from a random viewpoint, and was asked to rotate the struc-
ture with a computer mouse until they decided on a view that best
revealed the shape of the object. The wording of the question was
chosen such that it matches with the task question posed to the non-
experts.

During testing, the screen of the participant as well as their com-

mentary were recorded throughout the whole session. As the selec-
tion of viewpoints was part of a larger qualitative experiment on
bioinformatics software, the level of expertise with protein struc-
tures was not assessed at the beginning of testing. We therefore
used the video material to assess the level of expertise of all sub-
jects. As a result of this assessment, the viewpoints chosen by
5 participants were not included in the analysis, as they either
specifically mentioned not having prior experience in viewing pro-
tein structures and/or other comments implied so. None of the re-
maining participants expressed familiarity with the test structures
throughout the experiment.

Figure 5 (top) shows the distribution of viewpoint entropy for
all experts’ preferred viewpoints and their locations on the viewing
sphere (bottom). While there is a clear preference for high entropy
viewpoints in the structure with id 1aym400, experts seem to pick
viewpoints across the whole range of entropies for the other struc-
tures. However, across all structures, both low and high entropy
viewpoints are among the experts’ picks (except for 1aym400,
where mostly high entropy views were chosen). In addition, for
1axiB01 and 1a4iB01, up to 3 experts chose low to mid-range
entropy views. Finally, there is little agreement among experts on
the viewpoint entropy for the most complex structure 1kobA02.

The spatial location of viewpoints on the viewing sphere as il-
lustrated in Figure 5 (bottom) shows a similar pattern: We can see
3 distinct clusters for the simplest structure; for all other structures,
there is more variation overall with a single small cluster of 2 to
3 viewpoints. It is important to point out that viewpoints cluster in
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Figure 5: The distribution of viewpoint entropies (top) and spatial locations on the viewing sphere (bottom), for all viewpoints chosen by
experts. For every structure, an image of the lowest and highest entropy viewpoint chosen by experts was added to the plot. All of these
viewpoints except for the low entropy viewpoint of 1aym400 are either close or antipodal (on the sphere of camera positions) to the highest
(lowest) entropy viewpoints from Figure 1.

both the viewpoint entropy space as well as spatially, which sug-
gests that viewpoint entropy might guide the experts’ choices in
viewpoints.

7. Discussion

In this work, we conducted an evaluation of viewpoint entropy as
being a good predictor for the human viewpoint preference of pro-
tein structure ribbon representations. Within these constraints, our
results suggest that viewpoint entropy performs significantly bet-
ter than a random guess overall, while revealing that the relative
fitness of the model varies considerably with the type of the struc-
ture: The viewpoint entropy for structures with mainly beta sheets
(1axiB01) matches human preference more closely than for struc-
tures with a complex arrangement of alpha helices (1kobA02).
Considering how secondary structure elements are visualized in
ribbon representations of proteins, it seems that beta sheets are eas-
ier for humans to use as visual landmarks — possibly because they
are rendered with an arrow indicating a direction.

Another possible source of this variation is the different spatial
composition of secondary structure elements: For non-experts, the
average consistency decreases from simple, non-globular structures
with a clear principal direction (1aym400) to globular, more com-
plex and partly symmetric structures, where all 3 principal compo-
nents of backbone Cα atoms have a similar length (1kobA02 and
1a4iB01). Similarly, the agreement on good viewpoints among

experts varies greatly with the type of structure. However, in order
to test these observations, a larger set of test structures needs to be
investigated.

We investigated viewpoint entropy for 4 diverse structures with
respect to their composition of secondary structure elements.
Hence, we can only claim validity of our evaluation for these struc-
tures and viewpoints, although our pilot shows that the model is
able to predict good viewpoints for other structures as well.

One of our aims in this work was to investigate the consistency at
which non-experts express a choice for a pair of viewpoints, which
allowed us to (i) filter for careless subjects but also (ii) to investi-
gate the effect of the type of structure on consistency. In order to
quantify consistency, we required participants to conduct each trial
twice. As a trade-off between accuracy and effort for our partici-
pants, we therefore decided to use 100 viewpoint samples.

Other parameters that might have an effect on the results of this
study are the color map and the shading used to render the sample
structures. We have chosen to encode secondary structure both via
shape and color in order to facilitate comparison between differ-
ent viewpoints. The reasoning behind this decision is that protein
structures have complex shapes that require redundant encoding to
make the study feasible for non-experts.

Both experts and non-experts consistently chose high entropy
viewpoints for all 4 domains. In addition, experts were further
guided by low entropy viewpoints (for all but the structure with ID
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1aym400). The possible use of low entropy viewpoints for select-
ing good views of small molecules has been proposed previously
for ball-and-stick representations [VFSL06]; here we provide evi-
dence that this is also the case for ribbon representations of single
macromolecules. When asked for the reason of their choice, experts
indicated that low entropy viewpoints reveal potentially important
global features of the structure, such as the “sandwich” structure in
1a4iB01 or the “tunnel” in 1axiB01.

Some experts also picked views in-between low and high en-
tropy, which can be explained as follows: Even though specifically
asked to choose a view that revealed the overall shape of the struc-
ture, some experts seemed to pick views that emphasize specific
features of the structure instead. As opposed to naïve participants,
experts were allowed to explore the structure as long as they wanted
to by rotating it manually. By interacting with and acquiring multi-
ple views of the structure, more cues were available to get a better
sense of the structure’s depth. Even though a specific 3D shape of
the protein has been verbally identified by some experts, they still
chose a viewpoint that did not show that. One reason could be that
the depth information of the structure has already been properly
assessed, thus the chosen viewpoint did not need to capture that.
Another reason could be that the participants are prioritizing either
features or the overall shape; favoring one often requires occluding
the other.

Finally, we have chosen to use viewpoint entropy to evaluate
viewpoint goodness. As our methodology collecting human pref-
erence data is independent of the viewpoint goodness measure, our
data can be used to evaluate any other combination of such mea-
sures as well.

8. Conclusion and Future Work

In this work, we presented an evaluation of viewpoint entropy to
predict good views of ribbon representations of protein structure.
Our results indicate that viewpoint entropy is a significant predic-
tor for the human preference of viewpoints overall, while the com-
plexity of the structure seems to have an effect on the accuracy
of the predictions. However, to investigate the significance of the
structure complexity on viewpoint selection further, more data on
additional protein structures need to be collected. We further pro-
vided evidence that experts also prefer low entropy viewpoints of
macromolecules to highlight important functional elements.

Although we tested only 4 structural models, these samples rep-
resent a large number of domains contained in the PDB. In future
work, we are seeking to extend our set of benchmark structures to a
wider range of models, including samples from the PDB composed
of multiple domains and multiple molecules.
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