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Abstract—Typical scientific data is represented on a grid with appropriate interpolation or approximation schemes, defined on a
continuous domain. The visualization of such data in parallel coordinates may reveal patterns latently contained in the data and thus
can improve the understanding of multidimensional relations. In this paper, we adopt the concept of continuous scatterplots for the
visualization of spatially continuous input data to derive a density model for parallel coordinates. Based on the point–line duality
between scatterplots and parallel coordinates, we propose a mathematical model that maps density from a continuous scatterplot to
parallel coordinates and present different algorithms for both numerical and analytical computation of the resulting density field. In
addition, we show how the 2-D model can be used to successively construct continuous parallel coordinates with an arbitrary number
of dimensions. Since continuous parallel coordinates interpolate data values within grid cells, a scalable and dense visualization is
achieved, which will be demonstrated for typical multi-variate scientific data.

Index Terms—Parallel coordinates, integrating spatial and non-spatial data visualization, multi-variate visualization, interpolation.

1 INTRODUCTION

Parallel coordinates have become a common technique for the visu-
alization of high-dimensional data. In parallel coordinates, axes are
aligned parallel to each other and data points are mapped to lines in-
tersecting the axes at the respective value. The embedding of an ar-
bitrary number of parallel axes into the plane allows the simultaneous
display of many dimensions, providing a good overview of the data.
However, while the representation of discrete data points as lines may
reveal trends and patterns latently contained in the data, it also tends
to clutter the view due to potentially heavy overplotting. In conse-
quence, classical parallel coordinates do not scale well with sample
size, making it difficult to use with large datasets. Despite the over-
draw problem, typical information visualization techniques have been
gaining importance for the analysis of scientific data, allowing for the
detection of patterns which otherwise are difficult to spot.

For the visualization of large scientific data, we introduce continu-
ous parallel coordinates. Here, data is typically defined on a 2-D or
3-D continuous domain, represented on a grid with respective inter-
polation or approximation schemes. Our method uses parallel coor-
dinates to derive a continuous density description for such data. Al-
though the input data field has to be defined on a continuous domain,
the function describing it does not necessarily need to be continuous.

The main contribution of this paper is the mathematical model of
density in parallel coordinates. Our definition of point density is based
on “counting” discrete lines: we derive the point density by examining
the limit process of lines intersecting an interval with indefinitely small
vertical extent. Using this model, a relation of point densities from
2-D continuous scatterplots [2] to continuous parallel coordinates is
derived.

Furthermore, we examine different numerical and analytical solu-
tions for the computation of the model. Based on the point–line duality
of scatterplots and parallel coordinates, the algorithms can be divided
in two classes. In the scattering approach, a density description in
parallel coordinates is obtained implicitly by sampling points from the
input field. In contrast, the gathering approach computes the density
by integration within the scatterplot.

Continuous parallel coordinates exhibit several benefits: (i) The vi-
sualization does not depend on the resolution of the data, as the avail-
able interpolation schemes are used to compute the continuous rep-
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resentation in parallel coordinates. (ii) In contrast to other frequency
plot construction algorithms, our method is parameter-free: it does
not rely on bucket size, binning, or texture resolution which are com-
monly used for the approximation of density. (iii) A continuous den-
sity model scales well with sample size and resolution, providing the
basis for a visualization for which overplotting cannot occur. This
makes parallel coordinates interesting for the analysis of large data,
particularly in the field of scientific visualization.

2 RELATED WORK

Parallel-coordinates visualization utilizes a duality of points and lines:
points in m-dimensional data space are represented as lines crossing m
parallel axes in the 2-D domain of the parallel-coordinates plot. The
advantage of parallel coordinates is that there is no fundamental limit
on data dimensionality. Parallel coordinates were introduced by In-
selberg [14, 15], and subsequently extended by Wegman [26]. The
mathematical and geometric background of the point–line duality is
reviewed in Section 3.

Unfortunately, parallel-coordinates visualization in its original ver-
sion is subject to a couple of issues. One problem is the over-plotting
of lines, in particular for large data sets. With the current trend to-
ward applying statistical and information visualization techniques to
scientific data [9], large-data visualization has become ubiquitous. A
popular solution to the over-plotting problem is to replace opaque lines
by a density representation [19, 27]. This strategy is applied in many,
more recent publications as well. For example, features of the density
plots can be visually extracted by appropriate gray-scale mappings [1]
or general transfer functions [17]. Density-based visualizations can
also be applied to frequency plots [23]. The recent work by Blaas et
al. [7] specifically targets the visualization of multi-variate scientific
data by density-based parallel coordinates. We share the application
domain and also apply our technique to the same example test data
set: the hurricane Isabel flow simulation from the IEEE Visualization
2004 Contest1.

For the visualization of categorical variables, parallel sets [5] have
been introduced as an extension to discrete parallel coordinates. How-
ever, previous work that deals with continuous density representations
for the final visualization ignores the continuous nature of scientific
input data: typically, data discretized via grid points are displayed, ne-
glecting the reconstruction on the continuous domain. In contrast, we
specifically consider the continuity of the domain with respective data
reconstruction. The same basic approach can be applied to scatter-
plots [2] or histograms [8, 24]. The construction of continuous paral-
lel coordinates requires substantial modifications and extensions com-
pared to scatterplots and histograms because the duality of points and
lines needs be considered (see Sections 3 and 4).

1http://vis.computer.org/vis2004contest
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Fig. 1. Parallel coordinates are constructed by placing parallel axes ξi

on the η1η2-Cartesian coordinate system. A point in parallel coordinates
is mapped to a line in the data domain and vice versa.

Clutter reduction for large-data visualization can be achieved by al-
ternative approaches that are complementary to density plots and can
be combined with those. For example, brushing-and-linking [4], origi-
nally developed for scatterplots, can be applied to parallel-coordinates
plots in the form of angular brushing [13]. Another example is focus-
and-context visualization with user-controlled lenses and adapted sam-
pling of the data set [11]. Advanced four-level focus-and-context visu-
alization, developed for the visualization of temporal features in large
graph plots, shares aspects with density-based parallel coordinates and
might be applied to them [20]. Alternatively, segmentation or cluster-
ing of the data might be included in order to separate distinct regions
of the data: Johansson et al. [17] combine density plots with feature
animation applied to clustered data; Novotny and Hauser [22] include
the visualization of outliers and trends. Earlier work on cluster-based
parallel coordinates includes aggregated visual representations in hier-
archical plots [12], fuzzy cluster classification [6], and centroid visu-
alization of clusters [27]. Finally, proximity in the visualization might
be exploited by geometrically deforming the originally piecewise lin-
ear lines to curves [18, 28].

3 MATHEMATICAL MODEL

In this section, the mathematical model of continuous parallel coordi-
nates is presented. After introducing the terminology and definitions
used in this paper, the geometry of parallel coordinates is revisited.
Then, a generic density model for parallel coordinates is derived.

The model of continuous parallel coordinates is based on the
scalar density fields or continuous scatterplots [2] defined on an m-
dimensional domain we will refer to as data domain. Following this
terminology, another domain is introduced for the construction of con-
tinuous parallel coordinates: the parallel-coordinates domain defin-
ing a parallel-coordinates system in the Euclidean projective plane as
introduced by Inselberg [14]. A nice feature of parallel coordinates
is that the construction of the overall plot can be split into the con-
struction of several independent parallel-coordinate systems for 2-D
data, each emerging from a 2-D scatterplot. The final plot is then
formed by placing the parallel axes consecutively on the plane. For m-
dimensional data, this results in the computation of m−1 independent
parallel-coordinate systems. Therefore, we will focus on 2-D data for
the derivation of the mathematical model for continuous parallel coor-
dinates.

3.1 Geometry of Parallel Coordinates

We briefly summarize parallel coordinates as presented in [14, 16],
using our own notation. Parallel coordinates are constructed from a
ξ1ξ2-Cartesian coordinate system by embedding the axes ξ1 and ξ2 in
parallel onto another Cartesian coordinate system, the η1η2-Cartesian
coordinate system (Figure 1). In order to distinguish points between
data domain and parallel-coordinates domain, we will use the follow-
ing notation throughout the rest of this paper. Generally, we discrim-
inate between attribute values and their representation in the different
coordinate systems. For any 2-D attribute, ξ1 and ξ2 denote the respec-
tive point coordinates in the data domain while η1 and η2 are used for
point coordinates in the parallel-coordinates domain. If mappings of

multiple attributes have to be distinguished, superscripts are added to
the respective coordinates. For example, a 2-D attribute a : (a1,a2) is
mapped to the point ξξξ a

: (ξ a
1 ,ξ a

2 ) in the data domain. Dually, in the

parallel-coordinates domain, the attribute b has coordinates (ηb
1 ,ηb

2 )
with respect to the η1η2-Cartesian coordinate system.

Following this notation, any point ξξξ : (ξ1,ξ2) in the data domain
is mapped to a line segment between adjacent axes ξ1 and ξ2 in the
parallel-coordinates domain:

L
ξξξ
ηηη : η2 = (ξ2−ξ1)η1 +ξ1;η1 ∈ [0,1] (1)

Here, we set the distance between parallel axes ξ1 and ξ2 to one as
proposed by Inselberg [14]. Note that we use subscripts to denote the
domain in which the line is defined and superscripts for the parameter,
i.e. the dual point to the line. Hence, the line in (1) is given with re-
spect to the embedding η1η2-Cartesian coordinate system. In the data
domain, equation (1) allows another interpretation. Here, it implic-
itly represents the line corresponding to the point ηηη : (η1,η2) of the
parallel-coordinates system with respect to the ξ1ξ2-Cartesian coordi-
nate system. For this purpose, it may be interpreted as the projection
of the vector ξξξ onto ñ, which can be expressed by the dot product:

L
ηηη
ξξξ

: η2 = ñ ·ξξξ (2)

Note that ñ = (1−η1,η1)
t is perpendicular to L

ηηη
ξξξ

and only depends

on η1.

The distance Dξξξ of L
ηηη
ξξξ

to the origin is inherently contained in (2),

but its computation assumes normalization of ñ to unit length, such
that:

Dξξξ (ηηη) =
η2

||ñ||
=

ñ

||ñ||
·ξξξ (3)

Hence, the main conclusions of this section are two-fold: (i) the dis-
tance Dξξξ (ηηη) linearly correlates with η2, the vertical position of the

corresponding point in the parallel-coordinates domain and (ii) the

slope L
ηηη
ξξξ

in the data domain only depends on η1, the horizontal po-

sition of the corresponding point ηηη in the parallel-coordinates domain.

3.2 Generic Density Model

Our proposed density model is based on mass conservation, assuming
that (i) points in the data domain are given according to some density
description, and (ii) the mapping of points from the data domain to
lines in the parallel-coordinates domain does not change the number
of points (lines), i.e. a point in the data domain corresponds to ex-
actly one line in the parallel-coordinates domain and vice versa. As a
consequence, a vertical line (or an interval) in the parallel-coordinates
domain is mapped to a set of indefinitely dense parallel lines (or an
area) in the data domain (see Figure 2). This can be used to derive
a density description for points in parallel coordinates by examining
the limit process at the transition of areas to lines in the data domain.
With the assumptions (i) and (ii) stated above, the mass M covering an
area Φ⊂R

2 in the data domain with density σ : R
2 −→R,ξξξ 7→ σ(ξξξ )

is M =
∫

Φ σ(ξξξ )d2ξ . Considering the duality of points and lines, the

density ϕ : R
2 −→R,ηηη 7→ ϕ(ηηη) of a point ηηη in parallel coordinates is

based on “counting” lines within an interval along the vertical axis. It
can then be integrated to compute the mass of the covered interval Ω
according to

∫

Ω ϕ(η1,η2)dη2. Assuming mass conservation, the mass
of points (lines) does not change under the transformation from data
domain to parallel-coordinates domain:

M =
∫

Ω
ϕ(η1,η2)dη2 =

∫

Φ
σ(ξξξ )d2ξ (4)

Here, we assume the density σ(ξξξ ) to be known for any ξξξ (see [2] for
a derivation of densities in the data domain). Applying the fundamen-
tal theorem of calculus to (4) allows us to express the density in the
parallel-coordinates domain in terms of σ :

ϕ(η1,η2) =
dM

dη2
=

d

dη2

∫

Φ
σ(ξξξ )d2ξ (5)
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In order to compute the integral, we split Φ in two parts: one integra-

tion along the line Φ‖= L
ηηη
ξξξ

corresponding to ηηη and another integration

along the perpendicular direction Φ⊥ (see Figure 2). For this purpose,
the ξ1ξ2-coordinate system is rotated such that the rotated ξ2-axis can

be identified with the normal of the line L
ηηη
ξξξ

. Then, we can use

dDξξξ

dη2
=

1

||ñ||
(6)

as a result of (3) to transform the integration over Φ⊥ to an integra-
tion over Ω. Considering the limit process for indefinitely small inter-
vals in the parallel-coordinates domain further eliminates integration
over Φ⊥, such that the line density in a point (η1,η2) of the parallel-
coordinates system is fully described by the integral over the corre-
sponding line in the data domain:

ϕ(η1,η2) =
∫

L
ηηη
ξξξ

σ(L
ηηη
ξξξ
(λ ))

||ñ||
dλ (7)

with L
ηηη
ξξξ
(λ ) being the arc-length parametrized line L

ηηη
ξξξ

. Note that σ

typically has finite support, although L
ηηη
ξξξ

is defined on an indefinite

domain. A complete derivation of (7) is provided in the appendix.

3.3 Numerical Integration

Equation (7) describes the line density at any point in the parallel-
coordinates domain as a line integral along its dual line in the data do-
main, where the function to be integrated is the respective point density
σ of the scalar input field. In this section, two substantially different
approaches to the numerical integration of (7) are briefly discussed.

A typical gathering technique is to sample ϕ in the parallel-
coordinates domain followed by an evaluation of (7) in the data do-

main. Here, each sample ηηη has a dual line L
ηηη
ξξξ

constituting the integra-

tion domain for the computation of ϕ(ηηη). Numerical integration now

implies further sampling of σ over L
ηηη
ξξξ

and can be implemented using

known techniques such as Monte Carlo integration or Riemann sums.

By exploiting the point–line duality, another approach to numerical
integration of (7) is possible. Here, points are sampled from the data
domain and the respective densities are scattered to line densities in the
parallel-coordinates domain. The generic scattering algorithm using
additive blending is

1: sample points ξξξ i, i = 1,2, . . . ,n
2: for all ξξξ i do
3: setRGBAdrawColor(1,1,1,α)

4: drawLine(L
ξξξ i
ηηη )

5: end for

A possible application of the scattering algorithm is to sample
points on a regular grid on the data domain (step 1) and set α← σ(ξξξ i),
effectively resulting in a uniform sampling of the density function σ .

Note that point densities ϕ are then constructed implicitly by the su-
perposition of lines with different density. Due to the linear model of
(7), this leads to the same result as the gathering approach. Instead
of sampling uniformly on a regular grid in the data domain, a random
sampling strategy (with a uniform probability distribution) could be
used to achieve an “implicit” Monte Carlo integration for the compu-
tation of density in parallel coordinates. Similarly, low-discrepancy
sequences [21] could be used for sampling to obtain quasi Monte
Carlo integration. Using σ in an importance sampling approach fur-
ther improves performance compared with the standard or quasi Monte

Carlo methods. In this case, a constant density α must be used for L
ξξξ i
ηηη ,

i.e. α ← const. in step 3 of the generic scattering algorithm. Sam-
ple points are drawn from a probability density function given by σ ,
up to a constant scaling factor. Now, the computation of ϕ(ηηη) at the
sampling points ηηη remains only a matter of counting the (weighted)
lines intersecting with ηηη , which also is the basis of our mathematical
model of continuous parallel coordinates. Note that ϕ depends on the
number of samples and thus has to be normalized in order to properly
compare the results.

In practice, many 2-D density fields are derived from higher di-
mensional input fields with known (sampling) densities, such as 3-D
scalar fields, 3-D vector fields, or multi-attribute fields. Bachthaler
and Weiskopf [2] denote the domain of such an input field as spatial
domain and describe the transformation of density from the spatial do-
main to the data domain under the assumption of mass conservation.
In consequence, the computation of continuous parallel coordinates
using scattering may also be conducted on the spatial domain. Here,
multi-dimensional points are sampled and mapped to polylines in par-
allel coordinates with α ← const. This approach affects step 1 of the
generic scattering algorithm, as points are now sampled according to
the given density in the spatial domain (typically, constant density).
This method and previous density-based methods (such as [17]) con-
verge to the same basic computation with increasing grid resolution of
the input field. Therefore, in the limit of infinitely high resolution of
input data, continuous parallel coordinates and previous density-based
representations yield the same result.

3.4 Triangulated Data

In this section, we provide an analytic solution to (7) for data given
on tetrahedral grids in the spatial domain. Tetrahedral grids play an
important role as simulation grids or as common ground for data ex-
change using the approximation of other grid structures by triangula-
tion. Continuous scatterplots also support tetrahedral grids by exploit-
ing the projected tetrahedra algorithm [25]. Under the assumption
of mass conservation, spatial tetrahedra are projected to a set of tri-
angles in the data domain, resulting in a triangulation of the density
distribution with piecewise linear interpolation. Therefore, a piece-
wise computation of ϕ(ηηη) can be achieved by linear superposition of

the contribution of all triangles intersecting the dual line L
ηηη
ξξξ

. This ap-

proach is similar to the previously described scattering of densities,
although in this case, triangles instead of points are mapped to parallel
coordinates.

Figure 3 shows a possible footprint of a triangle ∆abc from the data

domain to the parallel-coordinates domain. The points ξξξ a
, ξξξ b

, and ξξξ c

are mapped to lines La
ηηη , Lb

ηηη , and Lc
ηηη in the parallel-coordinates domain,

as described in (1). For any vertical line η1 = ηωωω
1 = const., the inter-

sections with La
ηηη , Lb

ηηη , and Lc
ηηη are ηa

2 , ηb
2 , and ηc

2 , as derived in (1).
Without loss of generality, let

ηa
2 ≤ ηc

2 ≤ ηb
2 . (8)

This means that for each triangle, we label its vertices such that (8) is
true. Then, ∆abc is divided in two subtriangles ∆aec and ∆ebc. Here, a
case differentiation is necessary depending on the choice of ηωωω

2 . First,
let ηa

2 ≤ ηωωω
2 ≤ ηc

2 (highlighted red in Figure 3). The corresponding

line Lωωω
ξξξ

in the data domain intersects ∆aec in the points ξξξ f
and ξξξ g

:

Lωωω
ξξξ (λ ) = ξξξ f +

λ

t
(ξξξ g−ξξξ f) (9)
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Fig. 3. Footprint of a triangle in parallel coordinates after transformation
from the data domain. The point ηωωω

2 and its dual line Lωωω
ξξξ

are highlighted

in red. Assuming, ηa
2 < ηc

2 < ηb
2 , the triangle ∆abc is divided in two sub-

triangles ∆aec and ∆ebc.

with t = ||ξξξ g−ξξξ f|| and λ ∈ [0, t] for the segment contained in ∆abc.
Due to the piecewise linear density distribution obtained from the pro-
jected tetrahedra algorithm, we can use that

σ(Lωωω
ξξξ (λ )) = σ(ξξξ f)+

λ

t

(

σ(ξξξ g)−σ(ξξξ f)
)

(10)

such that the contribution ϕ
g
f

to ϕ(ηηηωωω ) as computed according to (7)
is:

ϕ
g
f

=
∫ t

0

σ(Lωωω
ξξξ

(λ ))

||ñ||
dλ =

t

2||ñ||

(

σ(ξξξ f)+σ(ξξξ g)
)

(11)

Now, we can use barycentric interpolation in subtriangle ∆aec to obtain
the density at the intersection points:

σ(ξξξ g) = σ(ξξξ a)+u(σ(ξξξ e)−σ(ξξξ a)) (12)

and

σ(ξξξ f) = σ(ξξξ a)+u(σ(ξξξ c)−σ(ξξξ a)) (13)

For the computation of u, distances of lines as derived in (3) can be
used. Let ∆ηωωω

2 = ηωωω
2 −ηa

2 be the vertical distance of ηηηωωω to ηηηa in the
parallel-coordinates domain. Similarly, let ∆Dωωω

ξξξ
= Dξξξ (ηηηωωω )−Dξξξ (ηηηa)

be the distance of Lωωω
ξξξ

to La
ξξξ

. Then, u can be derived using the intercept

theorem in the data domain:

u =
∆Dωωω

ξξξ

∆Dc
ξξξ

=
∆ηωωω

2

∆ηc
2

(14)

Note that ηa
2 ≤ ηωωω

2 ≤ ηc
2 and thus lim

ηa
2→ηc

2

u(ηa
2 ) = 1 using l’Hôpital’s

rule so that (14) is defined even for ∆ηc
2 = 0.

Similarly, for the computation of σ(ξξξ e), barycentric interpolation
within ∆abc yields:

σ(ξξξ e) = σ(ξξξ a)+ v(σ(ξξξ b)−σ(ξξξ a)) (15)

with

v =
∆ηc

2

∆ηb
2

(16)

and ∆ηb
2 > 0 (the special case ∆ηb

2 = 0 will be treated later). Now,
the final parameter to determine in order to solve equation (11) is t =

||ξξξ g−ξξξ f||, which can be obtained using the intercept theorem:

||ξξξ g−ξξξ f||

||ξξξ e−ξξξ c||
=
||ξξξ g−ξξξ a||

||ξξξ e−ξξξ a||
(17)

and thus:

t = u · ||ξξξ e−ξξξ c|| (18)

where ξξξ e
is linearly interpolated similarly to (15).

Altogether, equation (11) resolves to a single expression depend-
ing only on the point coordinates ηηηωωω in parallel coordinates and the
densities at the triangle vertices:

ϕ
g
f

=
t

2||ñ||

(

(2−u−uv)σ(ξξξ a)+uvσ(ξξξ b)+uσ(ξξξ c)
)

(19)

The second case ηc
2 ≤ ηωωω

2 ≤ ηb
2 is derived analogously by swapping

indices a and b in equations (13), (12), and (14).
Note that both subtriangles ∆ebc and ∆aec may degenerate to a line

if either ηc
2 = ηb

2 or ηa
2 = ηc

2 . As these cases are covered by (14) and

(16), there only remains the special case ηa
2 = ηc

2 = ηb
2 , where v is no

longer defined. Here, ∆abc degenerates to a line with three density val-
ues at the corresponding vertices, such that linear interpolation is not
valid anymore. In this case, the density at ηηηωωω according to the triangle-
model can no longer be represented by a function in the parallel-
coordinates domain. Instead, the degenerate triangle from the data
domain maps to a single point in parallel coordinates. The associated
density is represented by a delta distribution: ϕ(ηηη) = Mδ (ηηη −ηηηωωω ),
where M is the mass of the degenerate triangle which is conveniently
determined by integration in the spatial domain.

4 IMPLEMENTATION

This section presents implementations of the different computational
models introduced in Section 3.3 and 3.4. Each method will shortly
be explained and applied to a test dataset comprising a single triangle
with known density distribution in the data domain (see Figure 4) in
order to evaluate the numerical quality of the different methods.

The implementations are based on C++ and OpenGL with GLSL.
All calculations were performed using a 2048× 2048 floating-point
render target.

4.1 Triangulated Data

In Section 3.4, the contribution of the piecewise linear density given
on a triangle to ϕ(ηηη) was reduced to a single equation depending only
on ηηη and the densities at the triangle vertices. This can be used to
implement a rasterization of line densities in parallel coordinates. Af-
ter projecting a tetrahedral mesh from the spatial domain to the data
domain, the density distribution of each triangle is mapped to parallel
coordinates according to (19). According to the linear density model,
the total density ϕ(ηηη) can thus be computed using additive blending.

Using a floating-precision buffer as render target, the density is
computed for each texel individually, such that the algorithm can eas-
ily be adapted for a GPU implementation. In particular, fast interpola-
tion can be exploited for the computation of parameters to (19). Hence,
the primitives have to be generated, such that the necessary parame-
ters can be attached as texture coordinates. As can easily be seen in
Figure 4, the footprint of a triangle in parallel coordinates consists of
three lines, each representing one vertex of the triangle. In turn, each
line may intersect each other line, such that a minimum of zero and
a maximum of three intersections may occur. Dividing the horizontal
axis at each intersection yields up to four segments, each consisting of
two quadrilaterals. Rendering each quadrilateral with attached texture
coordinates representing u, ∆ηb

2 , and ∆ηc
2 then allows evaluation of

equations (19) and (16) in a GPU fragment program. For the special
case ηa

2 = ηc
2 = ηb

2 , we currently store a constant value in a separate
channel of the render target in order to mark the corresponding pixel.
In future, this may be considered for the final display. For a triangle
∆abc, the algorithm consists of the following steps:

1. Determine all intersections of La
ηηη , Lb

ηηη , and Lc
ηηη and divide the

horizontal axis into segments accordingly.

2. Determine upper and lower quadrilaterals (treat triangles as de-
generate quadrilaterals) and attach parameters u, ∆ηb

2 , ∆ηc
2 as

texture coordinates to the corresponding vertices.

3. Render quadrilaterals with fragment program enabled.



Fig. 4. The reference triangle with continuous density in the data domain (left), its footprint in the parallel-coordinates domain (middle) and the
density plot using an analytic solution for triangulated data (right). The triangle vertices and respective lines in the footprint are marked red, green
and blue. The density plots computed with numerical integration (gathering and scattering) are indistinguishable to the analytic solution. The
respective l2 distances are denoted in the main text.

Figure 4 shows the result of the implementation for the reference tri-
angle, after density normalization to [0,1]. As this approach represents
the analytic solution to the mathematical model of continuous parallel
coordinates, it may also be considered as ground truth for comparison
purposes. The fragment program used for the examples in this paper
is available as supplemental material.

4.2 Numerical Integration

Given a 2-D scalar density field, the gathering approach presented ear-

lier accumulates densities for each ηηη along the dual line L
ηηη
ξξξ

in the data

domain. In our implementation, we use the continuous reference tri-
angle with densities stored in a floating-point render target to compute
line integrals according to the gathering approach. Density values for
parallel coordinates are stored in a floating-point render target of the
same resolution. Then, for each texel in the parallel-coordinates do-
main, the dual line is sampled from the input field. In order to properly
reconstruct σ , the sampling rate was set to the respective Nyquist rate.
Due to the texel-based computation, the algorithm is perfectly suited
for hardware-accelerated computation. As there is no visible differ-
ence to ground truth, we computed the l2 norm of the difference vector
of the respective render targets to obtain a quantitative distance mea-

sure. After normalization, the relative distance, i.e. l2

N with N = 20482,

of the gathering approach to ground truth is approximately 1.2 ·10−7.
The error is negligible and, therefore, the gathering approach is an ap-
propriate alternative to the analytic solution. The sources of the small
difference between the numerical and the analytic solution include the
sampled representation of the scatterplot, the numerical integration,
and the interpolation when accessing the data domain. All these error
sources depend on the resolution of the data-domain representation.
Therefore, the quality of the numerical solution can be controlled by
adapting the resolution of the intermediate scatterplot texture. In con-
trast to the analytic solution using triangulated data, the gathering ap-
proach does not depend on the size of the dataset, such that it may be
used in a fast, although less accurate, implementation for the compu-
tation of continuous parallel coordinates. Note that, for the efficient
rendering of continuous scatterplots, Bachthaler and Weiskopf [3] re-
cently proposed adaptive techniques supporting a wide class of recon-
struction filters, including trilinear interpolation. The fragment pro-
gram used to compute 2-D continuous parallel coordinates from a con-
tinuous scatterplot texture is available as supplemental material.

A scattering approach was implemented according to the generic
scattering algorithm presented in Section 3.3. Samples are drawn ran-
domly on a triangle in the data domain using rejection sampling, i.e.
observations are sampled from the surrounding rectangle, rejecting
samples outside the triangle and linearly interpolating those accepted.

Then, for each sample ξξξ i, the dual line L
ξξξ i
ηηη in parallel coordinates is

rendered as a white polyline with density being represented by the
respective alpha value (i.e. α ← σ(ξξξ i)). The overall density ϕ(η) ac-
cording to (7) is obtained by accumulating alpha values of each line in-
tersecting η , which is conveniently implemented using additive blend-
ing. After normalizing, the resulting image is finally low-pass filtered

using a Gaussian 5×5 kernel in order to compensate for aliasing arti-
facts. Again, there is no visible difference to ground truth. The relative
l2 difference to ground truth is approximately 2.75 · 10−6, i.e. about
one order of magnitude higher than for the gathering approach. This
could be further improved by increasing the number of samples.

5 RESULTS

In this section, we compare discrete density-based and continuous par-
allel coordinates for a typical scientific visualization dataset. Further
examples are available as supplemental material. Discrete parallel co-
ordinates are created by drawing one polyline for each sample in the
spatial domain. For continuous parallel coordinates, a 2-D density
field is computed using the projected tetrahedra algorithm [2]. The re-
sulting triangles in the data domain are then mapped to parallel coor-
dinates as described in Section 4.1. In both approaches, a render-target
texture is used to obtain floating-point precision for the computation
of densities. In the case of discrete parallel coordinates, the density of
a pixel is computed by counting the lines crossing that pixel. Before
the content of the texture is written to the framebuffer, the densities
are normalized to the same density range. Furthermore, we apply a
logarithmic colormap to the normalized densities, such that low den-
sities are shown in black/dark-blue, mid-density values are shown in
red, and high-density values are mapped to yellow/white.

Figure 5 illustrates discrete and continuous 4-D parallel coordinates
of the IEEE Visualization 2004 contest dataset “hurricane Isabel”. The
original data consists of 48 timesteps, each containing measurements
of 11 attributes with a spatial resolution of 500× 500× 100. For our
comparison, we use the first timestep and four dimensions in three dif-
ferent spatial resolutions (original, and downsampled to 50× 50× 10
and 100× 100× 20). The visualized dimensions are the vertical spa-
tial position (height), temperature, pressure, and wind velocity. Both
temperature and pressure are contained in the original dataset, whereas
wind velocity is computed from wind speed in x-, y-, and z-direction.
Every dimension was normalized independently to the range [0,1] be-
fore computation. Furthermore, tetrahedra containing invalid attribute
data such as N/A-values were discarded.

The most prevalent character of the series of standard parallel coor-
dinates in Figure 5 is the increasing amount of clearly visible clusters
resulting from the discrete mapping of the vertical spatial coordinate
(height). Only at high resolutions the true character of the first dimen-
sion can be revealed, indicating a linearly increasing function defined
on a continuous domain. But, if only one of the plots were available, it
could falsely be interpreted as a set of high-dimensional clusters with
equal values on the first dimension. Continuous parallel coordinates
do not suffer from this problem, as linear interpolation of values is in-
herently contained in the density model. This can nicely be seen in
Figure 5, where the equal distribution of samples on the first dimen-
sion can already be observed at low resolutions. Note that this is a key
information which is entirely missing in discrete parallel coordinates.

We observe that continuous parallel coordinates of low-resolution
data rapidly converge to ground truth, i.e. plots computed from full-
resolution data. In order to obtain a numerical measure for similarity,



Fig. 5. Discrete and continuous parallel coordinates for the “hurricane Isabel” dataset at different spatial resolutions (50×50×10, 100×100×20,
500×500×100 from top to bottom). On the left side, discrete parallel coordinates are shown with the corresponding continuous version on the right
side. Sampling artifacts stemming from the discrete mapping of the vertical spatial coordinate (height) lead to misrepresentation of key information
in discrete parallel coordinates.
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Fig. 6. Relation of the relative l2 distance with spatial sampling rate
r = 500·500·100

nx ·ny·nz
, where ni denotes the number of samples in dimension

i. Both l2 as well as r are given relative to ground truth, i.e. to the full-
resolution data set. In order to accentuate the exponential relation, a
linear regression line in the logarithmic plot was computed.

the l2-norm of the difference of density for different spatial sampling
rates to the original dataset was computed with floating-point preci-
sion (Figure 6). The results show that difference decreases exponen-
tially with increasing spatial sampling resolution. Furthermore, the
largest l2 value of 1e-04 is still very small, emphasizing that the main
information contained in the data is already captured by low-resolution
plots.

A performance comparison of discrete and continuous parallel co-
ordinates is provided in Table 1. Although the gathering approach
allows for highly interactive computation of continuous parallel coor-
dinates while being independent of the spatial resolution, it depends
on the computation of continuous scatterplots, which make up most
of the total time needed to compute the final plot. More efficient
rendering techniques have been proposed recently by Bachthaler and
Weiskopf [3] and may be used to accelerate our approach as well.

6 CONCLUSION AND FUTURE WORK

We have presented continuous parallel coordinates for multi-variate
data defined on a continuous domain. The construction of such a high-
dimensional density field relies on the concept of two-dimensional
continuous scatterplots that are mapped to the parallel-coordinates sys-
tem using point–line duality. We have derived a mathematical density
model based on mass conservation during the mapping from spatial
to data and parallel-coordinates domains. The consecutive application
of this mapping allows for an arbitrary number of data dimensions.
Different numerical integration techniques for the computation of the
density model have been presented. We have shown that both gath-
ering and scattering techniques can be used for the approximation of
density in parallel coordinates. For triangulated data, an analytic solu-
tion has been provided.

An important benefit of continuous parallel coordinates is that typ-
ical sampling artifacts do not occur. Distracting patterns are removed

Table 1. Computation time in ms for continuous scatterplots (CS), con-
tinuous parallel coordinates (CPC), and discrete parallel coordinates
(PC) for different resolutions of the hurricane Isabel dataset. The mea-
surements were conducted on a Linux PC with an Intel(R) Core(TM) 2
Quad CPU running at 2.4 GHz with 4 GB RAM and an NVIDIA GeForce
8800 GTX graphics card.

50×50×10 100×100×20 500×500×100

CS 5022 7848 661164
CPC 5 4 4
PC 10 80 36631

which are not contained in the data, but emerge from the dependency
of discrete parallel coordinates on the sampling rate in the spatial do-
main. In contrast, continuous parallel coordinates are largely indepen-
dent of the resolution: plots generated from low-resolution data are
very similar to the full-resolution version. However, the accuracy of
the plots from coarsened data depends on the interpolation function
used in the reconstruction step. Hence, the algorithm presented in sec-
tion 4.1 using linear interpolation will therefore produce less accurate
results for higher-order characteristics.

This behavior demonstrates the fundamental aggregation character
of density-based parallel coordinates. Like other statistical visualiza-
tion techniques, such as histograms, this approach is robust under sam-
pling effects and other external influences, capturing the essence of a
dataset. It is important to note that although sparse data probably ben-
efits most from our method, sampling artifacts can also occur from
high-resolution data which are guaranteed to be removed by contin-
uous parallel coordinates. Another practical advantage of continuous
parallel coordinates is the scalability with increasing data set size: the
overplotting problem is avoided without the need for parameters such
as bucket-size or any other density approximation technique.

Apart from differences regarding the sampling of the data, how-
ever, continuous parallel coordinates share most of the advantages and
problems of discrete parallel coordinates. Many of the improvements
and extensions to parallel coordinates presented in recent work can
thus be applied to continuous parallel coordinates without restrictions.
For instance, parallel sets could be used in conjunction with contin-
uous parallel coordinates in order to join both categorical and con-
tinuous variables in a single plot. In principle, interactive techniques
such as brushing are also applicable to continuous parallel coordinates.
Smooth brushing [10] is particularly interesting for continuous data
representations, as a density gradient can directly be obtained from
the plots. However, methods depending on individual lines such as
angular brushing [13] cannot be used.

In the limit process, continuous parallel coordinates share the same
visual signature with classic density plots, where the characteristics of
parallel coordinates are fully captured but single lines cannot be per-
ceived. Using brushing, however, the line structure of discrete parallel
coordinates can be reconstructed in a controlled manner by sampling
the continuous version.

In future work, further application areas could be explored and
the usefulness of our visualization technique could be investigated by
application-oriented studies. We expect that applications with large
scientific data sets might benefit most from continuous parallel coor-
dinates. Other aspects of future work could include investigating ana-
lytic solutions to the computation of density for non-triangulated data
and non-linear interpolation schemes using continuous scatterplots [3]
and direct mapping of datasets from the spatial domain. The efficiency
of rendering parallel coordinate plots could be improved for the ana-
lytic solution by porting the geometry computations to the GPU and
for numerical integration by incorporating hierarchical and adaptive
techniques for the rendering of continuous scatterplots [3]. Finally,
the investigation of interactive, density-based brushing techniques is
an important task to be conducted in the future.

APPENDIX

This section provides the derivation of (7), the line density of a point
ηηη in parallel coordinates.

Assuming mass conservation, the mass M of the interval Ω in the
parallel-coordinates domain and the area Φ in the data domain must
be equal (see Figure 2)

M =
∫

Ω
ϕ(ηηη)dη2 =

∫

Φ
σ(ξξξ )d2ξ (20)

Applying the fundamental theorem of calculus yields

ϕ(η1,η2) =
dM

dη2
=

d

dη2

∫

Φ
σ(ξξξ )d2ξ (21)

Now, the integration domain Φ is split in two perpendicular directions



Φ‖ and Φ⊥. For this purpose, we define a rotation ν : R
2 −→R

2,ξξξ 7→

ν(ξξξ ) that maps the unit vector ξξξ 2 to n = ñ
||ñ|| :

ν(ξξξ 2) = ξ̃ξξ 2 = n (22)

Now, the transformation theorem for integrals can be applied to (20):

∫

ν(φ)
σ(ξ̃ξξ )d2ξ̃ =

∫

φ
σ(ν(ξξξ ))|det(Dν(ξξξ ))|d2ξ (23)

where D denotes the respective Jacobian matrix. Note that, in our case,
|det(Dν(ξξξ ))|= 1. Now, splitting the region ν(φ) = φ‖⊗φ⊥ remains
only a matter of splitting integrals:

M =
∫

φ‖

[

∫

φ⊥
σ(ξ̃ξξ )dξ̃2

]

dξ̃1 (24)

For the computation of the density follows:

ϕ(η1,η2) =
∫

φ‖

[

d

dη2

∫

φ⊥
σ(ξ̃ξξ )dξ̃2

]

dξ̃1 (25)

In order to transform the integration along φ⊥ to an integration over
Ω, we use that

dDξξξ

dη2
=

1

||ñ||
(26)

which is a result of (3). Then, the inner integral of (24) yields the
desired transformation to the parallel-coordinates domain:

∫

φ⊥
σ(ξ̃ξξ )dξ̃2 =

∫

Ω

σ(ξ̃1,Dξξξ (η2))

||ñ||
dη2 (27)

With (25), the density in the parallel-coordinates domain then be-
comes:

ϕ(η1,η2) =
∫

φ‖

σ(ξ̃1,Dξξξ (η2))

||ñ||
dξ̃1 (28)

Returning to the original coordinate system finally describes the line
density in a point ηηη of the parallel-coordinates system by integrating
over the corresponding line in the data domain:

ϕ(η1,η2) =
∫

L
ηηη
ξξξ

σ(ξξξ (λ ))

||ñ||
dλ (29)

with L
ηηη
ξξξ
(λ ) being the arc-length parametrized line L

ηηη
ξξξ

.
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