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Abstract
Multi-dimensional data originate from many different sources and are relevant for many applications. One specific sub-type of
such data is continuous trajectory data in multi-dimensional state spaces of complex systems. We adapt the concept of spatially
continuous scatterplots and spatially continuous parallel coordinate plots to such trajectory data, leading to continuous-time
scatterplots and continuous-time parallel coordinates. Together with a temporal heat map representation, we design coordinated
views for visual analysis and interactive exploration. We demonstrate the usefulness of our visualization approach for three
case studies that cover examples of complex dynamic systems: cyber-physical systems consisting of heterogeneous sensors
and actuators networks (the collection of time-dependent sensor network data of an exemplary smart home environment), the
dynamics of robot arm movement and motion characteristics of humanoids.
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1. Introduction

Multi-dimensional trajectories and time-series play important roles
in many applications. One source such data comes from are multi-
dimensional state spaces. Value changes within such state spaces
can be seen as continuous trajectories. Instead of treating such data
as unstructured collection of sample points, trajectories, similar to
time-series, represent different data values of one single entity—
i.e. one system—at different points in time. In general, a data set
is not limited to a single entity, but for the sake of simplicity we
restrict our work to this case. Comparing the concept of trajectories
with time-series, we want to define an important difference in the
context of this work. Time-series, such as financial stock data, do not
necessarily allow for interpolation as the underlying models might
not fulfill the necessary preconditions. We understand trajectories
as samples at different points in time along a continuous path within
multi-dimensional spaces, thus allowing for interpolation between
these samples as part of trajectory reconstruction.

Sources of multi-dimensional trajectory data are the state space
of complex networks of sensors and actuators, e.g. used for envi-

ronment automation. Such systems as well as the accompanying
computation technologies pervade our daily life, often completely
concealed. The paradigm of the Internet of Things [AIM10] follows
from the idea of interconnecting elements, such as wired and
wireless sensors and actuators, with intelligent communication
infrastructure. One instance of this paradigm is the idea of
cyber-physical systems (CPS) [Poo10] which relate such physical
elements to their virtual counterparts. Although, each element
acts only locally, i.e. sensing or manipulating the physical world
through the intelligent interconnect, the mutual monitoring and
controlling, the system as a whole can perform complex tasks safely
and efficiently. Concrete implementations of these paradigms are
contemporary smart structures, such as smart grid, smart factories
and smart homes. Interactive visualization of states of such systems
as a whole can aid understanding the complex interactions and the
emerging system behaviour. Especially, the scenario of smart homes
is highly challenging because of the extreme diversity of sensors and
actuators, as well as because this scenario exhibits the most dynam-
ics in terms of reconfiguration of the infrastructure, i.e. removing,
repositioning and adding system elements [FSS13]. Among others,
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smart home systems are comprised of environmental sensors,
such as temperature, ambient light, air humidity and barometric
pressure. Actuators range from simple elements, such as motorized
valves at heaters or window openers, to complex platforms such as
service robots for transportation and interaction tasks.

Data in such an application scenario are highly heterogeneous
and dynamic, e.g. different types or numbers of sensors may be
introduced into the system. Therefore, our design focuses on a
generic approach and a wide applicability to different data. We
understand our visualization design as a first-step exploration tool,
to gain overview of the data and some detail information, as precur-
sor to further analysis. We create three visualizations based on this
idea (cf. Figures 1 and 7): Continuous-time scatterplots (Figure 7,
left), in particular continuous-time scatterplot matrices (CSPLOM),
allow us to visually analyse correlations between dimensions and
to select potentially interesting subsets of dimensions. Continuous-
time parallel coordinates plots (CPCP) (Figure 1, bottom) represent
the multi-dimensional data in a compact form providing a good
overview. The novel key element of these plots is that they fully
incorporate continuous temporal interpolation, reflecting the data
characteristics of trajectories. We supplement these plots by a tem-
poral heat map (THM, Figure 1, top) showing the temporal evolution
of the data directly. In this way, the different kinds of plots provide
complementary information to cover all aspects of the data. These
visualizations are shown in coordinated views, with synchronized
dimension axes (for CPCP and THM) and highlighting a selected
point in time in all plots (cf. Figure 9).

Our main contribution is the theoretical foundation for
continuous-time scatterplots and CPCP, leading to respective and
practical visualization techniques. Based on physically motivated
density and mass conservation, which has been discussed before
for spatially continuous data only (cf. [BW08] and [HW09]), we
aggregate the trajectory data over time. This approach is directly
designed for trajectories in multi-dimensional spaces. We show the
usefulness of our method with several case studies, using coordi-
nated views of our continuous plots and THM, directly showing the
evolution of the data.

2. Related Work

There are many approaches to the visualization of multi-dimensional
data in general and to the visualization of time-dependent data in
particular. Surveys and books exist that provide a good entry point
into these topics, e.g. [WB94], [Kei02], [AMM*08], [AMST11].
In addition to generic concepts, application-specific solutions exist
that provide specialized visual metaphors. With our work, we aim
at generic multi-dimensional visualization of trajectory data.

Multi-dimensional data can be visualized following many dif-
ferent approaches [WB94], [Kei02]. Iconic representations such as
Chernoff faces [Che73] map dimensions to attributes of a glyph.
Others (e.g. the radviz method [HGM*97]) employ geometric trans-
formations to the input data or represent data values as pixels
[Kei02]. Further methods use axis-aligned 2D subspaces to visualize
pairwise 2D projections of the data such as scatterplots and scatter-
plot matrices [Har75] (SPLOM). Keim et al. [KHD*10] combined
the scatterplot concept with pixel-based visualization, to optimize

the visual information by a trade-off between strict placement and
overdraw. While scatterplots are typically used for the visualization
of 2D data, a SPLOM represents all pairwise relations of a data set
in a matrix of scatterplots. The most common use of a SPLOM is
to provide an overview of the data and allow the user to navigate
multi-dimensional data sets [EDF08].

Another method of pairwise 2D projections of the data is the
use of parallel coordinates plots [Ins85] (PCP). In traditional PCPs,
multi-dimensional points are mapped to polygonal lines intersect-
ing a set of parallel axes that represent dimensions, allowing one
to visually trace the values of a point in multi-dimensional space
[KZZM12]. However, for large data sets, parallel coordinates tend to
clutter the view due to potential heavy overplotting of lines. This has
been addressed using various approaches; see [HW13] for a recent
survey on parallel coordinates and techniques that address the issue
of cluttering. One approach uses brushing and colours to emphasize
data according to a given classification scheme. In this work, how-
ever, we do not have any a priori classification of the data. Alpha
blending [LS09], [DHNB09] can be used to visually separate dense
from sparse areas. However, alpha blending distorts the distribution
of lines and is dependent on the drawing order. These problems
are avoided by binning and other approaches based on counting
lines [AdOL04], [MW91], [FKLI10]. The concept of line density
is also present in other visualization applications, e.g. for stream
line visualization of vector fields [KLG*13]: density functions of
overlapping lines are accumulated by using additive blending. This
follows the idea of density, but all lines are equally weighted, inde-
pendent from the movement speed along these lines. Density images
for scatter plots and PCPs (using Hough space transformation) can
be employed to automatically assess the quality of the respective
visualizations [TAE*11].

However, none of the above techniques assumes the multi-
dimensional input data to be given on a continuous domain. This
problem is addressed by Bachthaler and Weiskopf [BW08] provid-
ing an analytical solution to the computation of the corresponding
density in scatterplots, which can also be applied to parallel coor-
dinates [HW09]. The continuous model allows for the extraction of
critical points [LT10], other features [LT11], the design of trans-
fer functions [GXY11], [WZL*12] and can be computed efficiently
[BW09], [HBW11]. Recently, Molchanov et al. [MFL13] have gen-
eralized the approach of the continuous data domain. Their data are
given by topology-free, multi-dimensional particle data from SPH
simulation and they present the method for generating continuous
star splots. All the above approaches, however, are based on the
continuous spatial data domain. We adopt the original approach
[BW08], [HW09] and present a model for the computation of den-
sities in both scatterplots and PCPs from a continuous trajectory
that we obtain by interpolation in the temporal domain.

Our model is based on mass conservation and thereby reflects
the discrete point-based rendering (for scatterplots) and line-based
rendering (for parallel coordinates) in the limit process of increas-
ing sampling rate and, thus, sampling quality. Noting that variation
integrated over time is lost when using the traditional line-based ap-
proach, Johansson et al. [JLC07] describe one of the few previous
approaches for parallel coordinates that explicitly take into account
the continuity of time for such time-dependent multi-dimensional
data. Their method used polygons with a fixed density for
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Figure 1: Temporal heat map (THM) and continuous parallel coordinates plots (CPCP) of sensor data collected over two full days: li denotes
ambient light sensors, ti temperature sensors, hi humidity sensors and bi barometric pressure sensors. The left diagrams use shared scaling,
making values across axes of the same type and across both days comparable. The right diagrams use independent scaling to show small
changes. The annotations (a)–(g) mark interesting observations (cf. Section 4.1).

consecutive points in time; accumulating densities then separates
regions of high variation from regions of low variation. However,
their approach does not visualize correlations between dimensions
originating from the data behaviour along a time step, because they
use a fixed-density model does not reflect the point–line duality
between Cartesian and parallel coordinates and its strong effect
on density. In contrast, our new model of continuous-time paral-
lel coordinates fully includes those aspects; therefore, it is the first
technique to deliver consistent results, regardless of the temporal
sampling rate.

Wegenkittl et al. [WLG97] used extruded parallel coordinates
to visualize multi-dimensional dynamical systems (note that the
authors use the term high-dimensional, but use data sets comparable
to our data in terms of numbers of dimensions). In their approach,
the parallel coordinates system is moved along the z-axis to encode
time, such that a 3D PCP is constructed. While their approach uses
parallel coordinates for visualization, we do not rely on 3D rendering
due to the additional ambiguity introduced by projection.

Other previous papers on PCPs for temporal data [BBP08],
[tCMR07] differ from continuous-time PCPs because they use ani-
mation to show time [BBP08], to show differences between succes-
sive time points [BBP08], or they use frequency plots only along
individual data axes but not between two axes [tCMR07]. How-
ever, the heat map representation of electroencephalography data
[tCMR07] is a typical example of previous work on frequency plots
for time-dependent multi-dimensional data. The design of our THM
follows this known strategies, modifying specific aspects of the
visual design to allow for easy integration in our multiple views
setup.

There are many ways to visualize time-dependent data in general.
While some traditional time-dependent visualizations, such as line
graphs, use interpolation for values between adjacent points in time,
they are either not suited for the visualization of multi-dimensional
trajectories or they are explicitly designed to search for events oc-
curring at a specific point in time. Hence, for the visualization of
the overall correlation between multiple variables, i.e. integrated

over time, such visualizations are not suited. Thinking of multiple
trajectories as a multi-dimensional data set, axes might also repre-
sent one time-dependent variable each, such that one polygonal line
is obtained for every point in time. This enables the visualization
of relations between variables over periods of time. A similar ap-
proach can be used for air-traffic control [Ins01], [Ins09], parameter
trajectories for facial dynamics [TFA*11] and the visualization of
trends in PCPs [LS09]. However, none of these examples employ
a density-based approach to the visualization of multi-dimensional
time-oriented data.

3. Visualization Techniques

Our visualization is composed of coordinated views showing differ-
ent representations of a multi-dimensional data set. The first one is a
CSPLOM showing the pair-wise relations between dimensions. The
second visualization is the highly related CPCP to show correlations
among all dimensions. Both plots support each other nicely, because
the CSPLOM allows the analyst to observe interesting dimension
relations, which can be used to derive subsets and ordering of di-
mensions for the CPCP. Because of the density-based model, the
CPCP present the value distribution on each dimension, allowing
one to spot outliers or value clusters. The third visual representation
is a THM. Both, the CSPLOM and the CPCP do not visualize time
directly, due to the integration over time. The THM uses parallel
dimension coordinates, such as the CPCP, but represents values by
colour, as all axes represent time.

Our visualization system combines all three representations in
the form of coordinated views: All views show the same data (or
subsets of the same data). The THM and the CPCP can share the
same dimension axes, i.e. using the same subset of dimensions
and the same ordering. If this is the case, then both plots can be
shown atop of each other and zooming and (horizontally) panning
is synchronized in these views.

Another coordination feature, which applies to all views, is the
synchronized selection of a point in time within the data. The whole
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trajectory can be viewed as animation, in which case this selected
point in time is changed automatically. We highlight the currently
selected point in time in the views using a line of user-defined colour
(cf. Figure 9). Here, we use red lines because this colour is not used
in the colour maps in the figures of this paper. The point in time
is shown as dots in the CSPLOM. In the CPCP, the values of the
currently selected point in time are highlighted by a corresponding
poly-line, similar to the classical PCP generation. In the THM, a
point in time is just a horizontal line.

To emphasize the direction of change over time, we extend the
highlight of the point in time, following the idea of afterglow. While
the benefit is minimal for the THM, the direction of change is an
important information for the CSPLOM and the CPCP (cf. Figure 9).
The length of the afterglow polygon in terms of past time steps can
be freely defined by the user or disabled completely.

We implemented the rendering of our plots in C++ with OpenGL
using GLSL shaders to harvest the processing power of pro-
grammable GPUs and to reach interactive frame rates. Most ele-
ments of the different plots are directly evaluated in the fragment
shader stage, e.g. the density information for the CSPLOMs and
CPCPs is computed by additive blending in float frame buffers.
A full view of a data set from the motion capture database
(cf. Section 4.3), containing 62 degrees of freedom and more than
2 700 time steps, renders at more than 90 FPS at a high resolution
of 3500 × 1000 pixel (GPU: NVidia GeForce GTX 680).

3.1. Continuous-time scatterplots

We adopt the model of continuous scatterplots [BW08] and continu-
ous parallel coordinates [HW09] for multi-dimensional trajectories.
Bachthaler and Weiskopf [BW08] describe a generic mathematical
model for the transformation of a density s in the spatial domain to a
density σ in the data domain under the assumption of mass conser-
vation (i.e. the total mass does not change under the transformation):

∫
s(t)dt =

∫
σ (ξ )d2ξ. (1)

Based on continuous scatterplots, Heinrich and Weiskopf extend
this model to compute a point-wise density ϕ in the 2D parallel-
coordinates domain [HW09], which is the subject of Section 3.2

While the model of continuous scatterplots and continuous par-
allel coordinates is generic, previous work focused on the transfor-
mation of data from a 3D spatial domain to the data domain and
the parallel-coordinates domain. To cover the problem of trajectory
visualization, we treat the temporal domain of the time-series anal-
ogous to a 1D spatial domain from which we compute densities in
scatterplots and parallel coordinates.

With t describing time, let τ (t) = (τ1(t), τ2(t), ..., τm(t))T denote
an m-dimensional trajectory in the temporal domain. We start with
trajectories sampled at discrete time points tj . Figure 2 (top) illus-
trates τ (t) in the discrete setting for all domains. Note that for every
time point, the m attached data values form a single m-dimensional
point in the data domain (or a single line in the parallel-coordinates
domain, cf. the red points or lines in Figure 2).
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Figure 2: Representation of multi-dimensional trajectory data in
the temporal domain (left), the data domain (centre) and the
parallel-coordinates domain (right). For every time point ti , m at-
tributes are mapped to points ξti = τ (ti) in a scatterplot and poly-
lines in parallel coordinates. Attributes or dimensions τi are rep-
resented as axes ξi . Resampling between tj and tj+1 with linear
interpolation results in lines with constant density in the scatterplot
(middle), whereas the vertical density of lines in parallel coordi-
nates changes with respect to the horizontal position x. Our density
model (bottom) correctly reflects this density.

The second row of Figure 2 shows the same data with val-
ues sampled at three additional points in time (obtained by linear
interpolation). The corresponding points in the data domain are
mapped to a curve (or a line for linear interpolation) intersecting
ξt1 = (τ1(t1), τ2(t1))T and ξt2 = (τ1(t2), τ2(t2))T. It is important to
note, however, that the underlying model supports any other inter-
polation scheme as well. For our data, we found that linear inter-
polation is sufficient to reveal interesting patterns in the aggregated
views, while keeping the mathematical model and implementation
simple. This is mostly due to the high number of samples in our ap-
plication, such that the difference to plots created with higher-order
interpolation schemes becomes negligible.

Since τ is a mapping from a 1D temporal domain to a 2D data
domain, the support for the resulting density σ in the scatterplot is
a 1D curve C. To compute σ , we split the 2D integration domain
of (1) in two parts: (i) along the resulting curve C and (ii) the
perpendicular space C⊥ around that curve:

∫
σ (ξ )d2ξ =

∫
C

[∫
C⊥

δ⊥(ξ̃ )dξ̃

]
σ̂ (ξ̂ )dξ̂ , (2)

where δ⊥ is a 1D delta function (more precisely, a delta distribu-
tion) on C⊥. This generalization is required because the support of
σ is just a 1D curve within the 2D scatterplot, i.e. a null set; any
integration over a function with the support of a null set vanishes.
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Figure 3: Traditional density-base scatterplot using discrete points
(left) compared to a continuous-time scatterplot (right) integrated
over time (trajectory). Only with the continuous-time scatterplot,
the path of interpolated values is visible through the continuous
representation (lower red arrow) and regions with high density
clearly denote prevalent values (red arrow at centre).

With (2), however, the 2D spatial integration yields finite values.
Therefore, the 1D density δ⊥ plays the crucial role in constructing
the continuous-time scatterplot. For background reading on distri-
butions as generalized functions, we refer to the textbook by Griffel
[Gri03].

By employing the transformation theorem for integrals to the
outer integral of (2), mass conservation for the time interval [tj , tj+1]
can be stated as

∫ tj+1

tj

σ̂ (rj (t))
∣∣r′

j (t)
∣∣ dt =

∫ tj+1

tj

s(t)dt, (3)

where σ̂ is the density in the data domain on the curve Cj and
rj : [tj , tj+1] −→ Cj is a parametrization of that curve. With linear
interpolation, Cj is the line defined by ξtj and ξtj+1 and we only need
to integrate the segment between those points and solve (2) for σ̂ to
obtain the density contribution of this line in the data domain:

σ̂j = sj

||ξtj+1 − ξtj ||
, (4)

with the assumption of constant density sj in the time interval
[tj , tj+1]. Note that s(t) describes the relative importance of samples
in the temporal domain and thus can be set to s(t) = 1 for uniform
sampling of time points. However, the model is generic and any
other density distribution can be used instead. The bottom row of
Figure 2 illustrates the density representation in all domains.

Due to the linear model of (1), the overall density is then obtain
by scattering all time intervals to the data domain and summing
over all density contributions at the respective points. A compari-
son of a discrete and continuous-time scatterplot using (4) is given
in Figure 3. The classical density-based scatterplots (left) can use
point splats (box function). Sample accumulation is thus visible
independent from the actual pixel resolution of the visualization.
Continuous-time scatterplots (right) still show these density vari-
ations. Furthermore, the path of interpolated values is visible—an
information that is easily lost in traditional scatterplots. Our method

visualizes the resulting scatterplot for the limit process of contin-
uously increasing the temporal sampling. The visualization is thus
consistent with our further representations of CPCP and THM. Ad-
ditionally, the temporal behaviour of the data, i.e. connections of
consecutive sample points, is also visible.

Since a single scatterplot visualizes only two out of m dimensions,
we added a scatterplot matrix (Figure 7, left) to our system in order
to present all pairwise correlations in a single visualization. This is
especially useful for interactively selecting dimensions of interest
and defining the order of axes in parallel coordinates.

3.2. Continuous-time parallel coordinates

In parallel coordinates, data dimensions ξi are represented by verti-
cal axes such that every point ξtj = τ (tj ) of the trajectory generates
a poly-line. As illustrated in Figure 5, a discrete mapping may lead
to the same visual encoding for different trajectories. Assuming in-
terpolation between points in time, however, we can use our density
model to disambiguate those similar cases.

Similar to the previous section, we employ a mass conservation
model for PCPs [HW09] to compute a point-wise density ϕ(x, y)
in the parallel-coordinates domain. Here, the model is based on the
observation that line density is determined by counting lines along
the vertical y-coordinate of the PCP. As a consequence, for every
horizontal location x in the parallel-coordinates domain, the integral
of the density ϕ(x, y) over y has to result in the same mass. Without
loss of generality, we defined the density formula ϕj (x, y) in the
time interval [tj , tj+1] and construct the overall density function as

ϕ(x, y) =
∑

j

ϕj (x, y). (5)

Similar to (1), mass conservation can be stated as

∀x :
∫ yj+1

yj

ϕ(x, y)|dy| =
∫ tj+1

tj

s(t)dt, (6)

with yj being the y-coordinate of the poly-line generated by τ (tj ) at
horizontal location x. In parallel coordinates, the y-coordinate can
be computed as

y(t, x) = (1 − x)τ1(t) + xτ2(t), (7)

with x ∈ [0, 1] between axes representing τ1 and τ2. To compute
ϕj (x, y) from y(t, x) and to guarantee mass conservation, the deriva-
tive of y with respect to t is required:

∂

∂t
y(t, x)|[tj ,tj+1] = �yj (x)

�tj
= y(tj+1, x) − y(tj , x)

tj+1 − tj
. (8)

Using this derivative for variable substitution in (6)

∀x :
∫ tj+1

tj

ϕ(x, y)
|�yj (x)|

�tj
dt =

∫ tj+1

tj

s(t)dt, (9)
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Figure 4: The resulting images from different approaches to PCP
rendering for two example dimensions. Left: the classical line-based
approach with a highly sampled trajectory (2700 samples), centre:
the CPCP using our model described in Section 3.2, right: the CPCP
as presented by Johansson [JLC07]. In the limit process of sampling
more and more lines using linear interpolation, the traditional plot
converges to our continuous model in the centre.

Figure 5: Sketch of ambiguous cases for discrete parallel coordi-
nates. The top and middle time-series are mapped to the same visual
encoding in discrete parallel coordinates (centre column). Using a
density representation, these cases are disambiguated (right col-
umn). CPCPs further allow us to visualize local and global patterns
simultaneously, as the bottom example illustrates. Here, two local
negative correlations and one global positive correlation are con-
tained in the time-series.

finally yields the formula for the density in the CPCP:

ϕj (x, y) = �tj

|�yj (x)| s(t). (10)

A comparison between a classical PCP and our CPCP is shown in
Figure 4. The data set shown contains more than 2 700 samples along

1 )mumixaM()muminiM( 0

1 )mumixaM()muminiM( 0

0.01 0.1 0.67

Figure 6: The colour maps used in all of our visualization screen
shots. Top: the colour map for the THM (from ColorBrewer [HB03]:
sequential YlGnBu). Bottom: the colour map for the PCP. Due to the
normalization in the density-based approach, the maximum values
are only reached in very few regions. To be able to distinguish more
values, additional interpolation colours are needed at low density
(left).

the trajectory. Note that the classical PCP and our model yield very
similar results, as the discrete version approximates continuous-time
parallel coordinates in the limit of an infinite number of samples
[HW09].

The usefulness of a visualization using density-based PCPs de-
pends on the selected colour map. In our implementation, the colour
map can be freely and interactively defined by the user. This allows
the user to choose a colour map optimal for representing the features
of the corresponding data set being visualized. For our presentation,
we use a colour map generated by ColorBrewer [HB03]. Figure 6
shows the colour maps we used for our visualizations in this work.
The lower map is used for all PCPs (except for the sketches in
Figures 2 and 5). The colour map is inspired by the density of ink in
hand-drawn plots, thus interpolating from white (minimum density)
over blue to black (maximum density). From (10) follows that the
density depends reciprocally on the difference in height between
the lines corresponding to two adjacent samples. We chose a com-
promise between avoiding numerical problems and preserving the
disambiguity feature of CPCPs by restricting the density to a maxi-
mal value and by choosing our non-linear colour map. This second
colour map can also be freely defined and adjusted by the user.

3.3. Temporal heat map

The third view of our visualization is a THM, based on the well-
known heat map concept [WF09], which represents data values by
colour (often based on cool-warm shading). In our implementation,
this representations shares the idea of parallel vertical axes for each
dimension with PCP. However, unlike the PCP the vertical direction
always depicts time. The values in each dimension along these
axes are shown by colour using the user-defined colour map (cf.
Figure 6). We chose a colour map from ColorBrewer that is suitable
for printing and colour blind users. However, any other colour map
can be used to better adjust to specific data. The rationale for the
design of the THM is to compensate the lack of explicit information
about time in the CSPLOMs and CPCPs. In the THM, the values
for each dimension for each point in time can be seen.

The explicit representation of time allows one to quickly grasp
temporal evolution of the data. For example, it is possible to distin-
guish between fast and slow changes based on the size of the area
of a colour change (cf. e.g. Figure 1). Easily distinguishable colours
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even allow us to qualitatively compare values across several dimen-
sional axes (cf. e.g. Figure 10). While the value distribution over the
whole data set is explicitly visible in the CPCPs, the information of
value changes behaviour is explicitly shown in this THM. Thus, all
three visualization complement each other.

4. Case Studies

CPS can basically consist of two distinct types of elements: sen-
sors, monitoring the physical world, and actuators, manipulating
real objects. The number and type of these elements are highly
heterogeneous and dynamic throughout the system, e.g. sensors
and actuators may be added, removed or repositioned. We inves-
tigated three test cases. The first one mimics a smart home by an
experimental installation of environmental sensors. We integrate
concepts of service robots for our further test cases. While the
ultimate goal of humanoid, multi-purpose service robots is not im-
plemented, we use installations on smaller scale to investigate in-
dividual elements. For evaluation in the context of this paper, we
use a robotic arm, equipped with force sensors at the joint motors
(cf. Figure 7). However, we do not want to limit our visualization to
concrete setups. To look at data beyond our currently available hard-
ware installations, we chose to use motion capture data from human
subjects as third test case towards the concepts of humanoid service
robots.

4.1. Sensor network data

For our research project, we set up a CPS consisting of several
wireless sensors distributed in several rooms of our lab, modelling
a smart home environment. These sensors are automatically inte-
grated and managed by a middle ware [FSS13]. To evaluate our
visualization, we used data from nine sensors in three rooms col-
lected over 48 h (cf. Figure 1). Each room was equipped with
one ambient light sensor (l1, l2 and l3) and one humidity sensor
(h1, h2 and h3). Additionally, two rooms were equipped with tem-
perature sensors (t1 and t2), while the third room was equipped with
a sensor for barometric pressure (b3). All three sensors in each room
were bundled and placed at the same location. Rooms 1 and 3 have
windows facing east, while room 2 has windows facing west. The
sensors’ data were sampled once per second, filtered (eliminating
noise), and aggregated to one value per minute, resulting in 1 440
samples per day. Data from some sensors show resolution problems,
e.g. t1 and t2, which is clearly visible in the CPCP, as shown in the
right diagrams in Figure 1. To provide a frame of reference, the
dashed lines (a) roughly indicate the times for sunrise and sunset.

The diagrams on the left of Figure 1 use the same scaling for axes
of the same type for both days, making all values comparable. Here,
two interesting observations are marked: The temperature t1 and hu-
midity h1 in room 1 show strong negative correlation, visible both
in the CPCP and THM (b). This seems obvious, because humidity
should decrease in a room when the temperature increases. How-
ever, this correlation is coupled to extreme values on the respective
axes only (c) which occurred only in rooms 1 and 3. The corre-
sponding peak values are visible in the THM early after sunrise. An
explanation is that early that day the sun was shining brightly into
the rooms, which is also indicated by the peak values of ambient

light (e), raising temperature and lowering humidity. The effect is
weaker in room 3 because here shutters of the windows were par-
tially closed. A similar event occurred at the second day but is only
visible by small value peaks (d). This is most likely because on the
second day the sky was clouded. Therefore, the values of the light
sensors do not show peak values as prominent as on the first day.
Instead, unexpectedly high values for light and temperature can be
seen late on the second day (f), which can be explained by artificial
lighting.

In general, correlations between different sensors in the rooms are
often not evident, except for the aforementioned event. For example,
correlations among the sensors in room 2 are not clear at all, looking
at the left diagrams. Using independent scalings for each dimension
(right diagrams), the CPCPs show correlations for parts of the data.
However, t1 and h1 exhibit positive (lower lines) as well as negative
(upper lines) correlations visible by bundles in the CPCP (g). Similar
bundles can be seen between the dimensions of the sensors of the
other rooms, but were not highlighted to not overload the diagram
with annotations.

These are some observations and interpretations of the combined
visualizations of these data sets. Of course, more events are present
within the data and are visible, e.g. minor peak value in l2 each
evening, corresponding to sunlight from the sun at low elevations
shining into the rooms, or that the humidities of the rooms 2 and
3 are more closely related than the humidity of room 1. Actually,
rooms 2 and 3 are located at the north-end of the corridor, rather
close to each other, while room 1 is located at the south end of the
corridor.

4.2. Robot arm data

CPS can also contain actuators manipulating the physical world. One
of the most complex examples are robotic actuators. In our scenario,
we experiment with an robot arm Jaco [jac]. This robot arm has six
motorized joints and a three-finger hand. In the simple test case we
evaluate, the arm lifts up a bottle of water at one position and puts
it down at new position. Eliminating the need for extra sensors, the
whole movement was trained beforehand. The visualization of the
resulting data can be seen in Figure 7.

The intuitive graspable values (apart from trajectory time) are
the positions of the robot hand lifting the bottle, i.e. PosX, PosY
and PosZ. However, to understand the strain for the arm from a
robotics point of view, the important values are given in relation to
the motorized joints. Thus, as a first step, the coordinates of the hand
are correlated to the joint positions using a CSPLOM (cf. Figure 7,
left). Figure 7(a) shows a strong correlation between the x position
and the joint number one. The y position component is positively
correlated to the second joint (Figure 7b). Most importantly, the z

position, which is the elevation of the hand and characterizes the
lifting of the bottle, is mainly correlated to the second joint as well
(Figure 7c).

To inspect the joint data (right half of the right diagrams in
Figure 7) dimensions of relative position change and forces act-
ing on each joint motor are visualized. These values are expected
to be positively correlated, as the forces are measured via the mo-
tor’s currents, which, in turn, are changed to control the motion of
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(a)

(a) (b)

(c)

(c)

(b)

(d) (d) (d) (d) (d)(e)

(e)

Figure 7: Visualizations of a trajectory of a robot arm. Left: CSPLOM; top right: THM, bottom right: CPCP. Annotations (a), (b) and (c)
show correlations between robot hand coordinates and robot arm joint angles. Annotations (d) and (e) show expected positive correlations
between angle changes of the arm joints and forces acting upon these joints. At joint 2 (e), a more complex behaviour is visible (cf. Section 4).

Figure 8: CPCP of the three dimensions of data set of the robot
arm lifting a water bottle (displayed dimensions: time, elevation of
hand, force acting on joint 2, time). The visualization of the data
set on the right shows an aberration from the other data sets as the
forces are not reaching the expected minimum peak.

the arm. The positive correlations are clearly visible for most joints
(Figure 7d) with the exception of the second joint, which shows
some disturbances (Figure 7e). Most prominently, some values of
JFor2 seem to be shifted below the usual values (also visible in the
corresponding continuous-time scatterplot). Knowing the scenario,
this joint is responsible for the force for lifting the bottle during
the middle part of the trajectory, as additional work to carrying the
weight of the arm itself.

Figure 8 shows the CPCPs of data sets of two trail runs of this
scenario, only showing the z position and the force on the second
joint, as these dimensions relate to the lifting of the bottle. While
the data sets of most trail runs are identical to the data shown in the
left diagram, the data set in the right diagram shows an aberration in
the force dimension. The negative peak in force when the bottle is
lifted up is much higher than expected. This means that the weight
the arm is lifting is less than usual. In this specific trail run the bottle

Table 1: Selected data sets [CMU] for our additional visualization experi-
ments.

Subject Trail Description

1 1 Forward jumps, turn around
7 1 Walk
39 13 Walk

was simply missing and the joint was only lifting the weight of the
arm itself.

4.3. Humanoid motion capture data

To extend our experiments from the robot arm to data comparable to
a humanoid service robot, we use human motion capture data from
the Carnegie Mellon University Motion Capture Database [CMU].
Apart from our application scenario, such data is of interest for
visual exploration, e.g. Bernard et al. presented a visual data base
exploration application [BWK*13]. Similar to the scenario of the
robot arm, we are interested in the angular joint position values and
forces, as these are relevant from a robotics point of view. Table 1
summarizes the data sets we use.

Figure 9 shows three important dimensions of the right leg—head
of femur, knee and ankle—of the data sets 1.1 (jumping forward) and
7.1 (normal walking). The jumping motion in 1.1 (top left) generates
clear negative correlations between both pairs of dimensions. For
the walking motion in 7.1 (top right), correlations are not clear.
Highlighting the point in time of the animation with afterglow and
viewing the data set as animation changes in the correlations become
visible: negative correlations (bottom left) change a few time steps
later into positive correlations (bottom right) within a single step.
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Figure 9: CPCPs of the three main dimensions of the right leg of
data sets 1.1 (top left) and 7.1 (top right). The jumping in 1.1 exhibit
strong negative correlation among these dimensions, whereas the
correlation is not clear for the walking in 7.1. Viewing the animation
with point-in-time afterglow highlighting reveals negative correla-
tion (bottom left) as well as positive correlation (bottom right).

Figure 10: Two walking data sets (7.1 left; 39.13 right) in THM
and CPCPs.

This indicates the temporal behaviour when rolling the foot through
the step while walking.

We, therefore, compare data set 7.1 to a second walking data set
(39.13). Figure 10 shows both data sets in comparison with THM
and CPCPs. One observation is that subject 39 has considerably
less distinctive areas on the tibia dimensions (knee angles; 2nd

and 5th dimensions from left). In the CPCPs this is clearly visible
by differences in the density distributions on these axes (arrows).
Subject 7 has rather strong spikes towards the minimum value,
while subject 39 shows a more uniformly distribution along the
whole axes. On explanation is that subject 39 does not stretch his
knees completely while walking.

5. Conclusion and Future Work

The goal of our visualization design is to aid the visual analysis
and exploration of multi-dimensional state-space trajectories. To
this end, we do not restrict our design to specific setup but instead
use general visualization components in coordinated views. These
visualizations are THM, CSPLOM and CPCP. For the CSPLOM and
CPCP, we have introduced a model for data integration over time and
mass conservation. In our result section, we have discussed different
case studies, for a model CPS as well as motion capture data. We
have presented observations based on the different visualization
and derived explanations. These observations are examples of what
can be discovered via a visual analysis process using the chosen
representations.

The CSPLOM is ideal to spot correlations between dimensions
(cf. Section 4.2), which can then be analysed in detail, e.g. via
CPCP (cf. Section 4.3). It also visualizes the value changes by
connecting consecutive sample points. Except for highlighting a se-
lected point in time and using an afterglow metaphor to visualize
the dynamics of the trajectory, information about time, especially
the concrete point-in-time of the individual sample points, is lost in
these two diagrams. The THM addresses this problem by explicitly
displaying values over time (cf. Section 4.1). Each of these repre-
sentations has advantages and disadvantages. Their combination in
coordinated views allows the user to compensate the weak points
of the individual visualizations. With the presented observations
(cf. Section 4), we were able to better understand relations of differ-
ent aspects of our experimental CPS. For example, the complexity
of correlation of different sensors was surprising (cf. (g) in Figure 1)
and interesting for designing automatic event detection algorithms
[FWS13].

We only understand our visualization design as first and generic
exploratory analysis step. For many applications, specific visualiza-
tions convey the relevant information much better, e.g. for motion
data (cf. Sections 4.2 and 4.3) explicit visualization in the spatial
context of the skeleton is much easier to understand and interpret
(cf. [BWK*13]). We will continue using and extending our visu-
alization as part of our research project. The most important issue
we want to investigate is the utility of (semi-)automatic filtering
and visualization configuration. One issue is finding good parame-
ter settings for the visualizations itself automatically [SSK06], e.g.
colour maps or ordering of axes for the CPCP suitable for specific
tasks. Especially, visualizing long trajectories the CSLPOM and
CPCPs accumulate much data with different interpretation neces-
sity. Thus, (semi-)automatic selection of temporal intervals, while
still maintaining the overview of the whole trajectory, is not trivially
implemented with our approach. A further idea is filtering a data set
before visualizing it, based on data-mining algorithms. This filter-
ing might be applied in terms of selecting subsets of dimensions, as
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well as in terms of adaptive temporal sub-sampling of the input data
[TLS12]. Finally, we will investigate further possibilities for the
user interface and usability, such as enhanced selection and linking
and brushing, to optimized the interactive exploration.
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