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ABSTRACT

We present a new application, SpRay, designed for the visual ex-
ploration of gene expression data. It is based on an extension and
adaption of parallel coordinates to support the visual exploration of
large and high-dimensional datasets. In particular, we investigate
the visual analysis of gene expression data as generated by micro-
array experiments; We combine refined visual exploration with sta-
tistical methods to a visual analytics approach that proved to be
particularly successful in this application domain. We will demon-
strate the usefulness on several multidimensional gene expression
datasets from different bioinformatics applications.

Keywords: Visual analytics, bioinformatics, gene expression ex-
periments, microarray data, large-scale microarray

Index Terms: I.3.3 [Computer Graphics]: Line and Curve Gener-
ation, Display Algorithms I.3.6 [Computer Graphics]: Interaction
Techniques J.3 [Life and Medical Sciences]: Biology and Genetics

1 INTRODUCTION

The investigation of large high-dimensional datasets generated by
recently developed high-throughput methods is a very common task
in bioinformatics. This is largely due to the use of these methods in
a wide variety of applications in biology and medicine. The need
for useful methods for such investigations will become even more
important as they become a more and more common part of the
daily work in the bioscience and bio-engineering laboratories and
hospitals. For instance, microarray-based gene expression studies
generate data for several thousands of genes (data samples) under
numerous different conditions (dimensionality of the data). The
data itself is stored in the gene expression matrix as the fundamen-
tal structure, which we use as the basis for our visual analysis. This
matrix contains the expression values of one gene under the differ-
ent conditions in its rows and the gene expression values of a cer-
tain condition in its columns. Conditions imply a large variety of
different meanings, which can be external or internal stress factors
(e.g., heat or chemical irritation) under which the cell is growing,
pathological states of the cell, mutated cells, or time points of time
series.

Note that the terminology of gene expression matrices is differ-
ent from the standard terminology in the context of data visualiza-
tion. The term samples – in the context of bioinformatics used to
depict different conditions – is mapped to the different dimensions.
In contrast, the individual genes are mapped to the data values (or
data samples in the visualization terminology). For this reason, we
try to avoid the term data sample when we depict the individual data
points and call the gene expression values data values.

There is a strong need for adequate methods to reveal relevant
effects that are latently contained in the data and to separate these
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from the noise attributed to the measuring procedure. Several sta-
tistical methods already exist that attempt to achieve this goal [1].
Nevertheless, the analysis of a microarray-based gene expression
experiment is still a very challenging task. Often the application of
only one method is not successful and it is necessary to employ a
number of different methods [1]. This situation leads directly to the
design of comprehensive, flexible, and extendable software systems
like SpRay to analyze microarray data. Nevertheless, a consensus
of the different analysis methods must be found to get reliable re-
sults. To address this issue and to profile the used statistical analysis
methods, our novel contribution is the conjoined visual exploration
of the original data together with the associated deduced statisti-
cal data in a common data space (see Fig. 1). This combination
of automatic (statistical) and visual analysis leads to a visual ana-
lytics approach that provides more insights in the structure of the
data and that prevents misleading impressions as much as possible
at the same time. In this paper, we introduce such a visual analytics
approach for the analysis of high-dimensional microarray data.

Figure 1: The Visual Analytics (VA) approach of SpRay: statistical
data is derived (semi-)automatically from the original data and com-
bined with it into the common visual analytics data space. This com-
mon VA data space is then visually explored to analyze the data.

The remainder of this paper is organized as follows. After briefly
reviewing related work in Section 2, we introduce the used varia-
tion of the parallel coordinates plot to visually explore and interpret
the provided data (Section 3). Section 4 presents the results of the
visual analysis of the examined datasets, which in turn will be dis-
cussed in Section 5. Finally, we present our conclusions and point
to future directions of research (Section 6).

2 RELATED WORK

The importance of designing appropriate visualization methods for
bioinformatics was already discussed in [21]. Furthermore, Gilbert
et al. used in an early approach [8] heatmaps, dendrograms (for
cluster hierarchies), and VRML models to represent the data, in par-
ticular the cyclicity of Spellman’s yeast cell cycle (see Section 4).
Since then, several papers have addressed the visualization for this
application domain. Saraiya et al. [23] studied the applicability of
five different visualization tools for microarray data. These tools
focus on specific visualization techniques such as heatmaps (Clus-
terview), parallel coordinates (TimeSearcher), and a combination
of several techniques such as scatterplots, histograms, parallel co-
ordinates, and heatmaps (Hierarchical Clustering Explorer, Spot-
fire, GeneSpring). The dataset size of the explored datasets ranged
from 170 genes to 1060 genes (data points), and the data dimen-
sionality from three dimensions to 90 dimensions. Their basic con-
clusion was that tools designed with a specific context in mind do
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not perform very well for other applications. Furthermore, they
stressed the importance of the supported interaction techniques to
derive knowledge from the data.

In 2003, Swayne et al. described the GGobi system that pro-
vides several linked visualization techniques, including parallel co-
ordinates and scatterplots [26]. Flexible colormapping is provided
through (automatic) brushing and statistical data can be generated
through R, a framework for statistical computing [20]. One of the
strengths of GGobi is the use of animations or ”tours” to provide a
quick overview of the data. While GGobi works well with smaller
datasets (e.g., Half-Marathon and Microarray validation in Table 1),
its response time becomes significantly slower for larger ones due
to its slow rendering. The actual problem of GGobi, however, is
overplotting when too many data points are present. Furthermore,
it does not focus on the conjoined analysis of original and statistical
data (generated through R).

Peeters et al. [18] presented a system that combines an in-
teractive visualization of DNA sequences with provided annota-
tion information. A more application-specific system is PQuad,
which visualizes differential protein expression data from mass
spectroscopy using colored horizontal line graphs to indicate the
predicted positions of the peptides and proteins along DNA strands
[9]. GVis [10] focusses on the scalable visual representation at dif-
ferent hierarchy and abstraction levels. A less abstract, more mea-
surement specific system was presented by Linsen et al. [15], who
used colored height fields of m/z-ratios and time.

A framework for the visual integration of additional meta-
information of gene expression data was introduced in [7] and
demonstrated in an application of the heat colormap. The enhanced
heatmap showed the clear advantages of the integration of supple-
mental data from different sources for the visual exploration of mi-
croarray data.

An interesting application of the parallel coordinate plot (PCP)
was presented in Rübel et al. [22]. The Berkeley Drosophila Tran-
scription Network Project (BDTNP) developed a suite to aid the
quantitative, computational analysis of three-dimensional gene ex-
pression patterns of early embryo states of Drosophila on a cellular
resolution. Similar to our work presented here, the PCPs employed
here were used to investigate the expression levels of a couple of
genes of every cell. One cell is represented in the PCP by one poly-
line and the expression levels of the different genes are assigned
to the dimensions. Some extensions are described to improve the
reception of interesting effects displayed by the data, for instance
opacity modulation for visual clustering and a three dimensional
extension of the PCP.

Recently, Westenberg et al. presented a visualization system,
GeneVis, that focuses on genome expression and regulatory net-
works dynamics [28]. Similar to our approach they use statstical
testing to grasp the reliability of the gene expression data. How-
ever, they do not provide the process of an interactive conjoined
analysis of original and derived data that is not restricted to a spe-
cial kind of statistical evidence values. Instead, their visualization
focus is on the network and interaction aspects deduced from the
data rather than the data itself.

In summary, no system, but SpRay, provides a conjoined anal-
ysis of original and statistical/derived data in one common visual
analytics data space (see Fig. 1), which is the major contribution
of the work, and which proved to be very useful. Furthermore,
many bioinformatics systems do not sufficiently address the case of
overplotting, which reduces its utility for large datasets.

3 EXTENDING PARALLEL COORDINATES

A well-known traditional technique for the visual representation of
multidimensional datasets is the parallel coordinate plot (PCP) in-
troduced by Inselberg [11]. In the field of gene expression, the
PCP is already established as a profile plot of the expression val-

ues of genes along the experimental conditions. In this commonly
employed kind of plot the PCP remains restricted only to the visu-
alization of the gene expression data itself.

Unfortunately, the conventional PCPs do not scale well with the
number of data values. In particular, a large number of data points
will cause an overdraw problem, so that common patterns and de-
tails are hidden by the clutter of lines. Several approaches are pro-
posed to address this issue, such as sampling [5, 12], curved lines
[16, 29], and clustering [6, 13, 17]. Closely related to the meth-
ods that we use are transparency/density or saturation modulation
based approaches [27, 2, 19, 17]. We use variations of these meth-
ods combined with color-coding and linked additional data plots
– such as scatterplots, histograms, and data tables, which we will
discuss in more details below.

The transparency of the lines can be varied to uncover common
traits of data items along the different dimensions of the data. In
particular, the transparency can be modulated globally for all poly-
lines of the data values. Alternatively, the transparency can be set
specifically for each dimension, taking into account the number of
polylines passing through a local area (bucket) of the axis.

The option to color-code the whole polyline of a data item ac-
cording to the data values of one dimension supports the discovery
of relations between the different data dimensions, depending on
the overdraw and the noise. In our novel application SpRay, we sup-
port a number of different colormaps, including the rainbow (hue)
map, the more isometric luminance and saturation maps, and a heat
(temperature) map. Since we need additional cues to differentiate
the polyline bundles, the perceptually preferable grey-level-map is
not usable.

The visual exploration is further assisted by integrated linked
simultaneous views like scatterplots (matrices) or table lenses be-
tween dimensions selected by the user and histogram plots of the
individual dimensions, similar to Doleisch et al.’s SimVis system
[4] aiming at flow simulation data. These plots also take advantage
of the color- and opacity-coding specified in the parallel coordinate
plot.

Figure 2: Top/Left: Straight forward parallel coordinate representa-
tion of the full Sinusoidal Demo dataset. Top/Right: Transparency
weighted representation of the full Sinusoidal Demo dataset. Some
structures are already visible through the transparency modulation.
Bottom/Left: Application of the heat colormap to the first dimension.
Bottom/Right: After culling of the data points of the base-line cluster,
the high amplitude clusters become nicely visible.

In contrast to most other applications of parallel coordinates,
microarrays can produce invalid data values for some dimensions
(conditions/experiments), while generating valid data values for
other dimensions. Therefore, our system has to deal with these sit-
uations. We address the invalid data values by replacing the invalid
data value by imputation, e.g. the average of the valid data values
for all experiments of the same gene. All imputed values can be
marked in a specific color (e.g., red).
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Note that while SpRay is aimed at gene expression data, it is
not limited to this kind of data; every multi-dimensional data with
or without invalid entries can be visualized with it. In [14], for
example, SpRay is used to visualize a tissue classification process.
It is implemented in C++, using OpenGL and QT to provide good
portability and good performance.

In the following, we demonstrate the usage of SpRay for mi-
croarray data. For the purpose of illustration, we use an artificial
21-dimensional dataset that mimics phases of different cell cycle
related gene transcript profiles based on three different clusters of
noisy sine waves (Sinusoidal Demo, see Table 1). This test exam-
ple is similar to the first real world example presented in the next
section.

The Gaussian noise modulates both the phase shift and the am-
plitude (Fig. 2 top/left). The first sinusoidal structures become vis-
ible after tuning the transparency modulation to a higher number of
data values (Fig. 2 top/right). The used colormap emphasizes these
structures such that the noise level can be reduced by removing the
noise data points (Fig. 2 bottom/left). In particular the cluster on the
base-line (low amplitude) can now be easily removed to emphasize
the remaining clusters with a high amplitude which deviate from
the baseline (Fig. 2 bottom/right).

Dataset #Data #Dim’s #Mined
Points Data Points

Sinusoidal Demo 2850 21+0 850
Yeast Cell Cycle 6178 18+3 approx. 800
Half-Marathon 345 8+10 13/6
Microarray Validation 1921 6+3 17

Table 1: Overview of examined artificial (Sinoidal Demo) and real
world datasets. For each dataset, we list the number of data points,
the number of dimensions (conditions + statistically derived condi-
tions), and the relevant data points.

4 ANALYZING MICROARRAY DATA

In the course of this study, we visually explored a number of multi-
dimensional data from gene expression experiments. Three of these
datasets are discussed in this section and are also summarized in Ta-
ble 1. They represent different exploration types that represent con-
firming scenarios (dataset two and three) and an explorative sce-
nario (dataset three). The first real world example (dataset two)
focuses on the genes that are active during the yeast cell cycle, and
hence expose a similar cyclic pattern, which in turn is used for the
model-based analysis. For the second example, SpRay is used as a
tool to guide the statistical analysis of differential expression. It
is furthermore used to explore the effect of different model-free
statistical correction methods to support the selection of the most
appropriate one. The third example illustrates how SpRay can be
applied as a quality tool for the validation of a new custom-made
microarray. All three examples demonstrate typical daily use appli-
cations of microarray analysis. Furthermore, their respective anal-
ysis employs our visual analytics approach, where statistical data is
automatically computed – or its computation is steered based on an
employed model – and visually explored together with the original
data (see Fig. 1).

YEAST CELL CYCLE: FINDING PERIODIC PATTERNS IN
MICROARRAY DATA

The first dataset is well-known in bioinformatics and describes
genes of the yeast Saccharomyces cerevisiae that are influenced by
the cell cycle (cycle-regulated) [25]. Spellman et al. investigated
the periodical variation of gene transcript levels in association with
the cell cycle in a comprehensive microarray-based analysis. To get

reliable gene expression signals, the cells from yeast cultures were
first synchronized by an arrest-release synchronization method re-
sulting in three different gene sets (α , CDC15, elutriation). mRNA
was extracted at consecutive time points following synchronization,
and gene expression values of more than 6000 genes were measured
using two-color cDNA microarrays. The arrays were scanned and
the basic analysis was done with common methods for background
correction, normalization, and quality filtering of the spot signals.
On top of this analysis, cyclicity, correlation, and clustering proce-
dures were employed to quantify and characterize the association
of the gene transcript levels with the cell cycle phases.

Spellman et al. found 800 genes which satisfy the minimum cri-
terion for cell cycle regulation that was defined. Follow up analysis
of the response of these genes to induce a certain cell phase and the
analysis of promoter sites of these genes showed further evidence
for a cell cycle association for a subset of these genes.

The yeast cell cycle dataset was closely examined in many pa-
pers. Shedden and Cooper [24] re-analyzed the data and derived
a more specific conclusion. They found that the randomization
of data showed less strong periodic patterns than the experimen-
tal data. Therefore, noise and random data fluctuations could be
ruled out to contribute to the cyclicity of the data1.

In this paper, we only used the data of the α factor arrested cells.
We re-analyzed the data in a similar way to Shedden and Cooper
[24] with a sinusoidal regression fit of cell cycle genes. The expres-
sion values y(t j) of a gene at time points2 t j were least square fitted
against a linear model with the two harmonic basic curves:

y(t j) = βs sin
(

2π

T
t j

)
+βc cos

(
2π

T
t j

)
+ r(t j). (1)

To detect the sinusoidal expression pattern of genes according to the
cell development, the period T was set to the nominal interdivision
time of 66 minutes specified by Shedden and Cooper [24]. The
value y(t j) is decomposed using Equation (1) into the interesting
harmonic part:

h(t j) = βs sin
(

2π

T
t j

)
+βc cos

(
2π

T
t j

)
, (2)

and the residual part r(t j) that quantifies the aperiodic content of
y j or oscillations with a significantly different period in compari-
son to the selected value of T . To evaluate the quality of the fit
to the model for every single gene, we calculated the coefficient of
determination:

R2 =
SSR

SSt
=

∑
(
ŷ j − ȳ

)2

∑
(
y j − ȳ

)2 , (3)

which measures the proportion of variability that is explained by
the model SSR (regression sum of squares) and the total variability
SSt (total sum of squares). The values of R2 lie between 0 and 1
(0 ≤ R2 ≤ 1), where R2 = 1 implies a perfect fit and R2 = 0 no
fit. For the visualization, we expressed the harmonic part h(ti) in a

1The first two synchronization methods (α , CDC15) produced good re-
producibility of the results, in contrast to the third method (elutriation).
Shedden and Cooper suggested in [24] that this may be rather due to the
stress response of the cells to the first two synchronization methods, than
normal variation of the transcript levels inside an undisturbed yeast cell.
This, however, does not limit the use of visual analytics methods to extract
information from the α dataset.

2While the time point samples in this example itself – not all gene ex-
pression data is taking samples at different time points – can be represented
as a kind of time-varying datasets, the combination with the statistical de-
rived values for the visual analysis is more flexible in a parallel coordinate
representation.
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Figure 3: Yeast cell cycle dataset. The first 18 dimensions of this parallel coordinate plot (PCP) correspond to the gene expression values
measured by Spellman et al. at the 18 time points for the α factor arrested cells [25]. The last three dimensions correspond to the values
obtained by the harmonic regression analysis (HRA): the coefficient of determination R2, the zero-phase angle φ0, and the amplitude A of the
estimated curve (see Section 4 for details). The polylines of the PCP are colored by the zero-phase dimension, so that the periodic changes of
the transcript levels of groups of genes can be very easily identified (blue, green).

more descriptive way as a single modulated and shifted sine wave:

h(ti) = A∗ sin
(

2π

Tk
ti +φ0

)
. (4)

The amplitude A and the zero-phase angle φ0 are determined by the
coefficients βs and βc and can be calculated with the help of the
commonly known addition theorems of trigonometry.

Figure 3 shows the visual representation of the gene expression
values in SpRay; all time points of the dataset are presented together
with the deduced values R2, φ0, and A. The coloring of all genes is
defined by the zero-phase angle φ0. The periodic changes in gene
activity can be very easily identified by visual examination of col-
ored polylines, eg. the visible cyclic patterns of cyan and green
polylines. The visualization determined by the derived value φ0
guides the user to a deeper insight of the data, for example, which
genes are active in the cell cycle. Through user-interaction with
SpRay, it is possible to emphasize further different aspects of the
data, for instance to search genes that show a nearly anti-correlation
pattern along the cell cycle. Figure 4 shows the result of a specific
zero-phase selection on the φ0-dimension, exposing two antisym-
metric cycles.

More questions can be answered with the help of other addi-
tional views that provide a more detailed view, such as a scatterplot
of appropriate dimensions, in particular if the dimensions are not
positioned next to each other. The scatterplot of R2 against the am-
plitude A colored by phase shift φ0 can be used to determine if only

expression profiles of a high amplitude A achieve good R2 values
(close to 1) and how these are related to the zero-phase angle φ0
(see Fig. 5). As we can see in this figure, R2 and A are highly cor-
related (both grow in the same direction), while no pattern can be
observed from the φ0 colors.

HALF-MARATHON DATASET: EMPHASIZE RELEVANT
EXPRESSION PATTERNS

The second dataset is taken from a study [30] that investigated the
effects of an exhausting endurance exercise on the immune system.
It is generally believed that a strong influence exists, which is at-
tributed to both a cellular shift in the composition of the peripheral
blood and to changes in gene expression levels. That study used
a custom-made cDNA-microarray of immune and stress response
related genes to investigate these different aspects in a systematic
way. Blood samples were taken from eight well-trained male half-
marathon runners in rest before the run (t0), immediately (up to 15
min) after the run (t1), and 24 hours after the run (t2).

The most interesting effects were seen between the status before
the run (t0) and immediately after the run (t1), hence only these
time points are included in this investigation. The study indicated
interesting changes in the transcript level of inflammatory genes
and even more interesting evidence for an association with the anti-
oxidative defense. Both indicate the higher stress level of the body.
Here, however, we are interested in evaluating the behavior of the
ten different p-value correction methods, as we will discuss below.

182



Figure 4: Selection of two groups of genes which show an anti-
correlated gene expression pattern along the cell cycle.

Figure 5: Scatter plot of dimensions R2 (x-axis) against A (y-axis)
colored by dimension φ0. Every point represents one gene profile.
The cluster shows an existing relation between R2 and A, but none
with φ0.

The data of the eight male runners are interpreted as biological
replicates and are assigned to 8 dimensions of the PCP (see also
Tab. 1). They are represented as the log-ratios of the gene expres-
sion values at times t0 and t1: log

(
exprt1
exprt0

)
. 10 added dimensions

represent deduced statistical values; mean and standard deviation of
the log-ratios of all runners, the p-value of a t-test against the null
hypothesis of no difference in gene expression between the points
in time t1 and t0, and seven p-values corrected by different methods
to address the multiple testing problem (Bonferroni (B), Holm (H),
Hochberg (Ho), Sidak (SSS, SSD), Benjamini-Hochberg (BH), and
Benjamini-Yekutieli (BY)), which are standard methods in bioin-
formatics3. Overall, this results in a PCP with 345 polylines for all
genes and 18 dimensions.

The specific choice of an adequate correction method is a non-
trivial problem in the context of microarray data analysis. If the
correction method is too rigorous, many interesting gene expres-
sion changes could be missed (high false negative rate). Also, if
the method is not strict enough, too many false positives render
the follow up investigations time-consuming, extensive, and expen-
sive. An applicable trade-off must be found based on the goals of
the study. Figure 6 gives a good impression of the eight measured
values and the ten deduced statistical parameters. The isomorphic
luminance-based two-color-coding is defined by the dimension that
represents the Bonferroni corrected p-values. This method is the
most rigorous and was selected for the study to get very reliable
results and a very low false positive rate. It furthermore exhibits a

3Although all these methods are standard, the question which methods
are the most appropriate for a specific situation is still disputed.

Figure 6: Half-marathon dataset. The PCP displays in the first 8
dimensions the log-ratios of the gene expression values of eight
well-trained half-marathon runners before (t0) and after the run (t1).
The following 10 dimensions correspond to deduced statistical val-
ues (mean (m) and standard deviation (sd) of the log-ratios, the raw
p-value of a t-test (p), and seven p-values corrected for multiple test-
ing, see Section 4 for details). The green line shows the 1.0-level
for the various p-values (no significance) and the red line shows the
0-level (full significance). This figure shows nicely that the p-value of
the majority of samples is of very low (yellow) significance. The view
of the PCP (with a color-coding according to the p-value corrected
after Bonferroni – marked with vertical yellow line) shows very nicely
the influence of the different correction methods.

very regular spread over the whole significance interval. The most
interesting genes are genes whose corrected p-values fall below the
defined level of statistical significance, which was predefined to
0.05 in this study. As we can see in Figure 6, the most interest-
ing genes are largely hidden by the large amount of other gene data
values. Hence, it is necessary to prevent the irrelevant genes (see
Fig. 7 from being represented in the plots, near the green horizontal
line) and to emphasize the most interesting genes (see Fig. 8, red
colored samples). Note that the red colored expression values here
show the 0.2 significance level (13 data points in Tab. 1). The highly
significant 6 data points with a p-value (correct after Bonferroni) of
0.05 is the lower sub-section close to the 0-level-line.

VALIDATION OF CUSTOM-MADE MICROARRAY:
OUTLIER DETECTION

The third example analyzes a dataset that was generated to vali-
date a new custom-made microarray. This microarray was devel-
oped as an enhanced successor of the array which was used in the
half-marathon study above. The dataset consists of five self-self
experiments (the first five dimensions of the PCP) and a real exper-
iment (the sixth dimension of the PCP). Self-self experiments use
the same biological material for both channels of one microarray
slide and address the technical sources of the signal error. Conse-
quently, no differential gene expressions should be detected and all
measured log-ratios are supposed to be near zero. Nevertheless, the
microarray analysis exposes a few extreme outliers which suggest
a difference in gene expression (see Fig. 9). The real experiment
compares the material from two saliva samples which were taken
immediately before and after an extensive physical training. In this
case, it was expected to see real changes in the expression levels of
different genes.

The comparison of the physical training experiment to the self-
self experiments shows a slightly smaller range of all measured val-
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Figure 7: The same data is visualized as in Fig. 6, but all genes
with an insignificant difference between gene expression values (cor-
rected (B) p-value larger than 0.99, vertical yellow line) are now
culled.

Figure 8: This plot emphasize the significant genes (red) of the study
(corrected (B) p-value smaller than 0.2, vertical yellow line).

ues for the first one, but these values are somewhat broader dis-
tributed over this range. This can be seen easily in PCP (Fig. 9), the
scatterplots (Fig. 10), and the histogram plots (Fig. 11). It clearly
depicts the difference of the technical and biological signals.

To get a better understanding of the observed effects, three sta-
tistical parameters were added (the last three dimensions). For the
first one we computed for each gene the fraction of flags set across
all six experiments. These flags are the result of an image analysis
(performing spot detection and signal extraction) of the microarray
slides and indicate a problematic signal quality. A gene with no
flag set across all experiments has the most reliable signal quality,
while the genes that had a flag set in each experiment (altogether
124) have the worst reliable signal qualities. Figure 12 shows the
PCP after keeping only the very unreliable (high flag rate, yellow)
and very reliable expression values (low flag rate, blue). This fig-
ure shows the success of the image analysis flagging; reliable (blue)
values of the self-self experiments consistently deviate only lightly

4To avoid a measurement bias, each experiment is actually performed
twice (”dye swap”).

Figure 9: Microarray validation dataset. The first five dimensions rep-
resent the self-self experiments (SE1, ..., SE5), the sixth dimension the
physical training (PT), followed by the statistical dimensions flags (F),
mean deviation (Dg), and relevance (Rg). The green line indicates the
zero level and the vertical red and yellow lines indicate the brushing
selections. Note that the vertical axis is logarithmically scaled.

Figure 10: Scatter plot of self-self SE2 experiment (x-axis) and phys-
ical training experiment (PT, y-axis) before (left) and after removal
of the log-ratios of the expression values with medium reliability flags
set (right and Fig.12). The physical training experiment shows a more
compact (red ellipsoid) distribution.

from the zero level, while the majority of unreliable values (yellow)
deviate significantly.

The second statistical dimension, Dg, is the mean of the log-
ratios |Mi,g| for a certain gene g along all self-self experiments i
(with N = 5):

Dg =
1
N

N

∑
i=1

|Mi,g| (5)

Genes with Dg deviating substantially from the expected value of
zero indicate here a problematic quality.

The final statistical dimension combines the previous deviation
metric with the values of the physical training experiment such that
genes with a high log-ratio |MPT

g | in physical training and a low Dg
are emphasized:

Rg =
|MPT

g |
Dg

. (6)

Here, large values Rg indicate interesting biological signals.
Figure 13 demonstrates the effect of this relevance metric. The

irrelevant expression values are removed (yellow selection), while
the relevant ones (red) are maintained. This figure shows also nicely
how the values classified as relevant expose a high deviation from
the zero level for the physical training experiment (PT), and a small
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Figure 11: Histograms of self-self experiment (SE2, left) and physical
training experiment (PT, right). The PT shows a broader distribution
as SE2 or the other (not shown) self-self experiments.

Figure 12: The same data is visualized as in Fig. 9. Log-ratios of
the expression values with a high set flag (not reliable) are colored
with a yellow luminance variation, and log-ratios with a low (or no) set
flag (reliable) are colored with a blue luminance variation. All other
log-ratios are removed.

deviation for the self-self experiments. Some of these relevant val-
ues, however, are also classified as not reliable by the image analy-
sis metric. These outliers are not uncommon for measured microar-
ray data.

5 DISCUSSION

SpRay supports the visual exploration of high-dimensional data,
such as microarray data, using parallel coordinates and other infor-
mation visualization methods. Trends and clusters can be explored
through the application of specific transparency modulations and
colormaps. However, often the raw data does not provide enough
structure to allow a comprehensive analysis. Therefore, we com-
bine visual exploration with statistical analysis methods for a visual
analytics approach. This combination allows to discover relations
that were difficult to reveal with visual methods alone, since it al-
lows the identification of irrelevant data, which can henceforth be
removed from the visual representation.

Another valuable advantage of this combination is the possibility
of visualizing the effect of the various analysis methods, as we have
shown with the half-marathon dataset. Reliability or instability of
the individual methods can be examined and considered for a spe-
cific application and allows this way a better understanding of them.
The essence of the different correction methods is nicely depicted
in all plots of the Half-Marathon dataset (Figs. 6 - 8). The lower
span of the raw p-values (p) delivered by the t-test are spread by all
correction methods over a greater area. The most rigorous method,
and therefore the largest spread of the lower area, is produced by the

Figure 13: The same data is visualized as in Fig. 9, but all log-ratios
of the expression values with a low relevance are removed.

Bonferroni correction (B). All other methods cause an increasingly
smaller spread (H, Ho, SSS, SSD) or a significantly different spread
for less rigorous correction methods such as Benjamini-Hochberg
(BH) and Benjamini-Yekutieli (BY), which (for our study) empha-
size too much on the samples with too little significance (yellow
coloring). This significant difference is also visible in the scatter-
plots of B against BH, and B against BY (Fig. 14). Note, however,
that the relationship (vertical sorting) of the expression values be-
tween the conditions has not changed through-out the correction
methods (Fig. 7).

Figure 14: Scatter plot to compare the Bonferroni with the Benjamini-
Hochberg (left) and the Benjamini-Yekutieli (right) correction methods
for this set of expression profiles. In the plots, the BH correction is ob-
viously much less stringent than the B correction and only somewhat
less stringent than BY.

The third example showed how a new custom-made microarray
can be validated using SpRay. We showed that virtually all outliers
of the self-self experiments could be detected by the reliability flags
and all relevant expression values were detected by the relevance
metric. A visual exploration on the experiment data alone would
have probably indicated (wrongly) a dysfunctional microarray.

As mentioned in Section 3, SpRay provides a diverse set of col-
ormaps to be applied to the different dimensions of the parallel co-
ordinates. One of them is the rainbow (hue) map. Although the use
of the rainbow map in visualization is highly disputed [3], since it
may suggest different closeness or distance to equally distant val-
ues, we found that it provides a good mechanism to differentiate the
different gene expression values over the many conditions (yeast
cell cycle dataset). Other, perceptually ordered or even perceptu-
ally isometric colormaps – eg. various temperature maps – provide
less qualitative differentiation, hence we opted for the rainbow map.
For the other two studies, however, we used luminance variations
between two colors (blue/yellow). Note that for all experiments, we
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are only looking for the qualitative differentiation, not for a quanti-
tative one, hence a perceptual ordered colormap is not required.

Overall, the visual analytics approach of combining original and
(semi-)automatically derived data, and the visual exploration of the
combined dataset proved quite successful in all three examples.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that combines visual explo-
ration techniques with statistical analysis methods to extract mean-
ingful information from microarray data. In particular this tight
integration of statistical analysis with interactive visual exploration
– now integrated into the emerging approach of visual analytics –
proved to be very powerful and useful. This approach provides an
integrated visualization of the original data and the statistically de-
rived value. By visualizing the effect on the data and the derived
values at the same time, it allows also the quick validation and eval-
uation of statistical methods on their appropriateness, which may
lead to a more standardized approach to the analysis of microarray
data.

SpRay provides numerous statistical analysis methods, which
are used in this paper to combine visual exploration and statisti-
cal analysis to visual analytics. If, however, more methods are re-
quired, a direct link between SpRay and R (an important analysis
system in bioinformatics) opens up the full statistical functionality
of R.

Although overplotting has been addressed through the use of col-
ormaps and opacity modulation, large datasets will still suffer from
it. Hence, our future work will particularly focus on solutions to
this issue.
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